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Abstract—Resolving domain incompatibility among independently developed databases often involves uncertain information.
DeMichiel [1] showed that uncertain information can be generated by the mapping of conflicting attributes to a common domain,
based on some domain knowledge. In this paper, we show that uncertain information can also arise when the database integration
process requires information not directly represented in the component databases, but can be obtained through some summary of
data. We therefore propose an extended relational model based on Dempster-Shafer theory of evidence [2] to incorporate such
uncertain knowledge about the source databases. The extended relation uses evidence sets to represent uncertainty in information,
which allow probabilities to be attached to subsets of possible domain values. We also develop a full set of extended relational
operations over the extended relations. In particular, an extended union operation has been formalized to combine two extended
relations using Dempster’s rule of combination. The closure and boundedness properties of our proposed extended operations are
formulated. We also illustrate the use of extended operations by some query examples.

Index Terms—Attribute value conflict, database integration, semantic heterogeneity, evidential reasoning.

1 INTRODUCTION

HE increasing need for applications that access data

from multiple independent databases has posed a great
challenge to the database research community to solve the
data heterogeneity problem. Chatterjee and Segev [3] define
data heterogeneity to be the incompatibility that occurs
among similar attributes resulting in the same data being
represented differently in different databases. Two types of
incompatibilities may occur, namely structural and semantic.
Structural incompatibility arises when attributes are de-
fined differently in different databases, while semantic in-
compatibility arises when similarly defined attributes have
different values/meanings in different databases. The for-
mer may be caused by differences in the attributes’ domain,
format, units, and granularity. The latter can be caused by
synonyms, homonyms, different coding methods, incomplete in-
formation, etc. Differing values of an attribute called A, of
tuples ¢, and #,, coming from databases DB; and DB, re-
spectively, can have one of following meanings:

1) Entity type incompatibility: Tuples t; and f, represent
instances from different entity types, and it is coinci-
dental that they possess properties represented by A.
For example, the height of a person is incompatible
with the height of a building.

2) Attribute homonym problem: A represents different
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properties of the same entity type in DB; and DB,. For
example, the attribute address of the entity type Em-
ployee can mean the office address in one database but
home address in another.

3) Entity identification: t; and f, represent distinct
real world instances of the same entity type.

4) Attribute value conflict: t; and t, represent the same
real world instance, and A models the same property
int; and £, but there is a conflict in the A values
stored in the two databases.

The first two cases are schema level incompatibility
problems. Several approaches have been developed to re-
solve them [4], [5] and we do not intend to discuss them in
this paper. The solution to both entity identification and
attribute value conflict problems requires the use of attrib-
utes from the two databases. Solutions to the entity identifi-
cation problem usually compare attributes between tuples
from different relations in order to decide whether they
represent the same real world entity [6], [3]. Attribute value
conflict resolution needs to be performed only when a pair
of tuples (from different databases) representing the same
real world entity are found to conflict in some attribute val-
ues [7], [1], [8]. In this paper, we assume that entity identifi-
cation precedes attribute value conflict resolution.

It has been observed that relying on definite and precise
semantic information alone to perform integration cannot
resolve all data heterogeneity problems. For example, two
relations R, and R, storing restaurant information and
coming from different databases, may not have any definite
values for the specialty attribute, see Fig. 2. However, it is
possible that some knowledge specific to each database
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may enable us to determine the range of values for that at-
tribute. With some knowledge about the menu items of
each restaurant, different weights can be assigned to the
possible specialty values for each tuple in the relations. For

example, the restaurant garden in R, may have 20 items in
its food menu. Among them, 10 are from Sichuan cuisine
and five are from Hunan cuisine. Using a simple voting
model, we can assign weights of 1 and 1 to the specialties

Sichuan and Hunan, respectively. By explicitly modeling
uncertainty, it is now possible to utilize further semantic
information to resolve attribute value conflicts. In the last
decade, a few approaches have been proposed for the at-
tribute value conflict problem as discussed in Section 1.2.
However, approaches that explicitly consider uncertainty
have been considered only in the recent past.

In this paper, we use the Dempster-Shafer theory of
evidence [2] to model the uncertainty faced in resolving the
attribute conflicts. We examine the problem of combining
the tuples in two sets of relations, each from a distinct data-
base, sharing a relation definition generated based on the
global schema. Our approach has been inspired mainly by
work in the artificial intelligence and expert systems com-
munities [2], [9], [10], [11]. Essentially, the problem of re-
solving data heterogeneity between databases can be for-
mulated as the problem of combining evidence supplied by
different sources. As a result, the traditional relation con-
cept is extended in the following aspects:

1) the use of evidence sets to model the uncertain attrib-
ute values produced by the mapping from actual at-
tribute to virtual attributes, and

2) the introduction of a tuple membership value for each
tuple to indicate the support for it being a member of
the relation.

In order to perform attribute value conflict resolution on two
extended relations, an extended union operation has been
defined. Other extended relational operations have also been
given for processing queries on the extended relations.

Fig. T shows our proposed database integration frame-
work involving entity identification and attribute value
conflict resolution. We assume that schema integration has
already been performed on the relations R, and R The
knowledge that is useful to entity identification and attrib-
ute value conflict resolution is extracted during schema
integration. The knowledge includes schema mapping, at-
tribute domain information, and integration methods.
Schema mapping establishes correspondences between at-
tributes from different relations. Attribute domain infor-
mation defines the mapping between attribute values from
different domains. Attribute integration methods are speci-
fied for deriving the attributes in the integrated relation.
Fig. 1 shows that we first preprocess each source relation to
make both relations compatible in their attributes. This
usually involves mapping the actual attributes from the
source relations into virtual attributes of the appropriate
domain types. With the tuple matching information pro-
vided by entity identification, tuple merging essentially
combines the attribute values of matched tuples based on
the specified attribute integration methods. It also produces
the integrated relation on which users can pose queries.
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Fig. 1. Entity identification and attribute value conflict resolution framework.

Focus and Scope: In this paper, we focus on the shaded
boxes in Fig. 1, ie., tuple merging and query processing.
We assume that the relations to be integrated are identical
in their attributes and domains, i.e., attribute preprocessing
has been performed. We will examine situations where the
preprocessed relations contain uncertain information. Un-
certain information may arise mainly because some attrib-
utes in the integrated database do not have their direct cor-
responding attributes in the component databases. The
process of deriving them using statistical or history infor-
mation may introduce uncertainty. We illustrate this using
an integration example. To appropriately represent this
uncertainty, an extended relational model is introduced.
For simplicity, we assume that the preprocessed relations
share a common key which determines the matched tuples.
An extended relational algebra for uncertain attributes is
introduced for merging attributes of matched tuples and for
query processing. The closure and boundedness properties
of our extended operations are formulated.

1.1 Example Databases to lllustrate Data Integration
To facilitate our explanation, we adopt the following inte-
gration example throughout this paper:

Let DB and DBg be two online databases maintained by
two local news agencies, Minnesota Daily and Star Tribune,
respectively, for restaurant information in Minneapo-
lis/St.Paul. In order to provide a comprehensive service to
future tourists, the Minnesota Tourist Bureau decides to inte-
grate the two databases. Since the information stored in the
two databases was collected by independent surveys con-
ducted by the two news agencies, there exists some conflict in
the attribute values collected about the same restaurant.

For purely illustrative purposes, we assume that schema
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TABLE Ra
rname | street bldg-no | phone tspeciality fbest-dish trating $(sn,sp)
garden | univ.ave. | 2011 371-2155 | [i%%, hu®23, | [d31%°,{d35,d36}%°] | [ex®*?, gd®?, 1,1
602%) vg®17]
wok wash.ave. | 600 382-4165 | [s1'] [d6°-33,d7°-33 d25%34] | [gd®?%,avg® ™) | (1,1)
country | plato.blvd | 12 203-9111 | [am!} [d1%-3,d2033 6017} lez!] (1,1)
olive nic.ave. 514 338-0355 | [it!] [d1'] lgd®®,avg®™®] | (1,1)
mehfil | Oth-street | 820 333-4035 | [mu®®,ta®? | [d24°4,d31%€) [ex®®, gd®?] (0.5,0.5)
ashiana | univ.ave. | 353 371-0824 | [mu®®, 6% | [d34%8, d25°2] [exz] (1,1)
TABLE RMa TABLE My
rname | mname | position | {(sn,sp) mname | phone 1(sn,sp)
garden | bwang | owner (1,1) hwang | 624-7807 | (1,1)
garden | lim pub-rel (1,1) lim 625-9631 | (1,1)
wok hwang | owner (1,1) jim 951-1234 | (1,1)
country | jim executive | (1,1) jaideep | 625-4012 | (1,1)
mehfil jaideep | executive | (0.5,0.5)
TABLE Rp
rname street bldg-no | phone tspeciality tbest-dish frating t(sn,sp)
garden | univ.ave. | 2011 371-2155 | [s6%5, hu®?,6%?) | [d31%7,d35%%) [ez®2,9d™%] | (1,1)
wok wash.ave. | 600 382-4165 | [ca®?,si%7, 8% | [d6%°,d7° %, d25%%) | [gd!] 1,1)
country | plato.blvd | 12 293-9111 | [am!] [d1°-2,d2°8] [ex®7,9d®% | (1,1)
olive nic.ave. 514 338-0355 | [it'] [d1%8,d2°?) [9d%2, avg®?] | (1,1)
mehfil | Oth-street | 820 333-4035 | [ma!] [d24°1, d31°9] lex!) (0.8,1)
TABLE RMp TABLE Mg
mame | mname | position | {(snsp) mpame | phone t(sn,sp)
garden | hwang | owner (1,1) hwang | 624-7807 | (1,1)
garden | lim pub-rel (0.6,1) lim 625-9631 | (1,1)
wok hwang | owner (1,1) shashi | 625-1234 | (0.7,0.9)
olive shashi executive | (1,1) jaideep | 625-4012 | (1,1)
mehfil | jaideep | executive | (0.8,0.8)

integration has been performed and the databases share a
common global schema as shown in Fig. 2. DB, consists of
relations R,, RMy, and M,. DBy consists of relations Rg,
RMg, and Mg. In this example, the source databases after
schema integration contain attributes which may be as-
signed uncertain values. Attributes which may involve un-
certainties are prefixed by “t,” e.g., tspecialty.

The contents of the database are shown below.' Note
that an additional attribute (sn, sp) has been included in

1. To save space, the speciality and rating attribute values have been abbreviated.

each relation to represent the membership of tuples in the
relation. The detailed definition of these relations contain-
ing uncertain 1nformat1on is given in Section 2.

Consider Table R4. * 1t consists of seven attributes among
which three attributes, i.e., best—dish, specialty and rating,
may contain uncertain values. Each tuple modeling restau-
rant has been obtained from some survey information on
the restaurant’s food and services. In a survey, a panel of

2. For s1mp11c1ty, we assume that the uncertain attributes of relation R,
are determined in the same way except that a different panel of reviewers
may conduct the survey.
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six food reviewers examines the food and service provided
by each restaurant. Each reviewer then casts one vote in
favor of a dish and a vote on the overall rating. The values
for the two attributes tbest-dish and trating are derived by
consolidating the voting results. For example, a voting sta-
tistics of the reviewers on one restaurant’s best dish and
rating, together with the consolidated attribute values, are
shown below:

VOTE STATISTICS ON BEST DiIsH

name of dish | number of votes

o 3 tbest — dish = [d1°5, 42033, 43017
d2 2
d3 1

VOTE STATISTICS ON RATING

rating number of votes

trating = [excellent®3®, good®®7)

excellent | 2

good 4

The restaurants’ specialty attribute can be obtained in a
similar manner by classifying the items in the restaurant
menus. Tuples from DB, and DBy can be matched by com-
paring their common key which is definite, e.g., rname is the
key used to match tuples in R, and Ry. The integrated rela-
tion contains all the attributes in both local relations.

m (Menaged

E (Restaura.nt) by)

Fig. 2. Example global schema.

(Manager)

1.2 Related Work and Our Contributions

Two kinds of research efforts are related to our proposed
attribute value conflict resolution approach, namely

1) other proposed approaches in resolving attribute
value conflict, and
2) research in representing uncertain data.

In this subsection, we first describe related work of Type 1,
followed by related work of Type 2. Finally we compare
and contrast our approach with these efforts.

Several approaches to the attribute value conflict prob-
lem have been proposed in the past:

o Dayal’s Aggregate Attributes: Dayal [12] proposed the
use of aggregate functions, e.g., average, maximum,
minimum, etc. to resolve discrepancies in attribute
values. For instance, if the salary attribute values of

record instances in two employee relations do not
agree, an average is defined over them to derive the
correct salary attribute value for the integrated rela-
tion. While aggregate functions [12] are useful in re-
solving numeric attribute values, our approach is ap-
propriate when an aggregate function cannot be de-
fined over attribute values which are either nonnu-
meric or uncertain. In this case, we can treat aggregate
function approach and our approach as separate
classes of attribute integration methods which can co-
exist in the integration framework (Fig. 1).

o DeMichiel's Virtual Attributes and Partinl Values: The
use of partial values to represent uncertain informa-
tion from source databases was first proposed by
DeMichiel [1]. DeMichiel handles mismatched do-
mains by allowing one-many and many-many map-
pings between actual attribute values and virtual at-
tributes. When an actual attribute value cannot be
mapped into a single definite value, a partial value
may result. A partial value can be characterized as a set
of values of which exactly one must be correct. The
combination of two partial values involves removing
the noncommon elements.

o Tseng, Chen, and Yang's Probabilistic Partial Values: The
notion of partial values was generalized by Tseng
etal, . to capture uncertainty in attribute values [8].
The possible values of an attribute are listed and
given probabilities to indicate their likelihood. Ex-
tended selection and join operations are provided to
filter out tuples which do not satisfy the query condi-
tion with the desired certainty. The possibilities of tu-
ples satisifying a query are given as part of the query
result.

In the following, we briefly discuss the relationship be-
tween our extended data model and two other related
models which have been proposed lately. A more in-depth
comparisons will be given in Section 5.2.

* An earlier version of extended relational model, also
based on Dempster-Shafer theory has been proposed
by Lee [9]. While this model is similar to ours, we
have further defined a generalized closed world as-
sumption for interpreting tuples not contained in the
extended relation so that query evaluation on our ex-
tended relations is finite. To be consistent with this
interpretation, our proposed operations have to sat-
isfy the closure and boundedness properties defined
in Section 3.6. We have also incorporated Dempster’s
rule of combination into the extended union opera-
tion for the purpose of resolving attribute conflict.

* A probabilistic data model (PDM) has been proposed
by Barbara etal., [13] to represent database entities
whose properties cannot be deterministically classi-
fied. Their model attaches probabilities to the attribute
values. However, the model allows probabilities to be
assigned only to individual values, and not their sub-
sets. PDM model does not capture tuple membership
information. Interestingly, in [13] Barbara et al., discuss
the potential need of a COMBINE operator to combine
two probability distributions of an attribute. We believe
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that such an operator has been realized in our model by
the use of Dempster’s rule of combination.

Contributions: We propose an evidential reasoning ap-
proach to resolve attribute value conflict. Our approach is
different from the other approaches to attribute value con-
flict [12], [1] in that it can combine attribute values which
contain quantified uncertainties. Furthermore, Dempster’s
rule of combining uncertainties provides our approach a
formal and well founded theory of combining information.
Our approach generalizes the partial value concept [1] to
capture extra uncertainty information. In DeMichiel’s ap-
proach, querying relations containing partial values may
produce a set of irue tuples and another set of may-be tuples.
True tuples are those that definitely qualify as the answers
to the query, while may-be tuples are those that may or
may not qualify as the answers. With the tuple membership
attribute, our model effectively allows a query to return
tuples with a full range of certainty. As a result, only a sin-
gle result set is needed. In precisely the cases that
DeMichiel's approach returns true tuples, our approach
returns tuples with full membership support. There are also
some major differences between the probabilistic partial
value approach by Tseng et al., [8] and ours. First, our ap-
proach, along with DeMichiel’s, assumes that source data-
bases provide consistent information, while Tseng's ap-
proach does not. As a result, their proposed rule of com-
bining uncertain information is different and the integra-
tion result retains inconsistent information. Second, their
model does not capture the uncertainty in information re-
lated to the membership of tuples within a relation.

1.3 Outline of Paper

This paper is organized as follows. In Section 2, we describe
the Dempster-Shafer approach to representing and ma-
nipulating uncertain information, and introduce the ex-
tended relation concept. We then define our proposed ex-
tended relational operations in Section 3. The two impor-
tant properties of the extended relational operations,
namely closure and boundedness properties, are discussed.
We also show that our extended operations correctly extend
the standard relational operations. In Section 4, we illustrate
our proposed extended relational operations using an exten-
sive query example. Some comments on the proposed model
are given in Section 5. Conclusions are given in Section 6.

2 EXTENDED RELATION:
REPRESENTATION OF UNCERTAIN INFORMATION

In this section, we introduce the concept of extended rela-
tion, which allows us to represent various forms of uncer-
tain information. This concept is based on the evidential
theory by Shafer [2]. We first describe the theoretical foun-
dation of Dempster-Shafer theory and then present the ex-
tended relation concept.

2.1 Basic Concepts

We denote the domain of an attribute A by ©, which is a
set of values A can possibly be assigned. To represent an
uncertain A value, mass values are assigned to subsets of 84
to denote the portions of belief committed to the sets. The

function that allocates these probabilities is called the mass
function(m) [2]. A mass function satisfies the following
properties:

m(@) = 0 (¢ represents empty set)
Yacgm(A) =1

Every subset of the environment which has a mass
greater than 0 is a focal element, i.e., A is a focal element if
m(A) > 0.

EXAMPLE. Let Ogyiniy be the set of all possible specialties
offered by a restaurant, ®gyciqy, = {american, hunan, si-
chuan, cantonese, mughalai, italian}. Let villagewok be a
Chinese restaurant whose specialty is not completely
determined but we may assign mass values to subsets
of Ogppeianry as follows:

1
m{{cantonese}) = 3

1
m({h””an, Sichuan}) =3

m({@smmlty}) = é

The above mass value assignment can be inter-
preted based on a group voting model. The assign-
ment indicates that half of the dishes on menu are
pure Cantonese, and 4 of the dishes on menu are in
the set {hunan, sichuan}, which cannot be classified as
pure Hunan or pure Sichuan. The left over mass value
is assigned to Ogpiany to denote nonbelief, representing
the fraction of dishes about which no classification in-
formation is available. Note that the amount of mass
value assigned to a subset of domain values is inde-
pendent of the size of the subset. For example, in the
above mass assignment, m({cantonese}) > m({cantonese,
hunan}) (since m({cantonese, hunan}) = 0).

DEFINITION (EVIDENCE SET). Let ©4 be the domain of values for
an attribute A. An evidence set is a collection of subsets of
0, associated with a mass function assignment [9].

For example, for the restaurant villagewok, ES1 =

1
/3 81/6

1/2 ) . .
[{cantonese} / , {hunan,sichuan} ', SIgecm”y] is an evidence set

associated with the specialty attribute.

The mass function assignment, m, indicates the distribu-
tion of belief among the set of possible values in the attrib-
ute A of some entity. The m value of a subset of @, is shown
as a superscript over the subset. When the subset contains
only one element, we may drop the curly brackets for sim-
plicity, e.g., {cantonese}o‘5 can be written as cantonese”” . Also,
to simplify the notation, we use © to denote the appropriate
domain of any attribute in the relation. If an evidence set
has only one singleton subset assigned with mass value 1,
then it represents a definite value (also known as atomic
value in relational model).

DEFINITION (BELIEF FUNCTION). A belief function, denoted by
Bel, corresponding to a specific mass function m, assigns to
every subset A of O, the sum of beliefs committed exactly
to every subset of A by m, i.e.,

Bel(A) = Y m(X)

XcA
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For example, Bel({cantonese, hunan, sichuan}) =
m({cantonese}) + m{{hunan)) + m({sichuan}) + m({cantonese, hu-
nant) + m({cantonese, sichuan}) + m(lhunan, sichuan)) +
m({cantonese, hunan, sichuan}) = % +0+0+0+0+ % +0= %.

The belief function, above, indicates the minimum de-
gree to which specialty(villagewok) e {cantonese, hunan, si-
chuan}, based on the evidence set ES1.

DEFINITION (PLAUSIBILITY FUNCTION). A plausibility func-
tion, denoted by Pls, corresponding to a specific mass func-
tion m, determines the maximum belief that can possibly
contribute to a subset of A. That is,

Pis(A)= Y m(X) =1- Bel( A)
AnXzg
where A =0, — A

A plausibility function is defined to indicate the degree
to which the evidence set fails to refute a subset A.
For example, Pls({cantonese, hunan, sichuan}) =
m({cantonese}) + m({hunan, sichuan}) + M{Ogpecianry}) = 1.
Alternatively, Pls({cantonese, hunan, sichuan}) = 1 -

Bel({Bel({cantoncse, hunan, sichuan})}) = 1 — Bel({lamerican,

mughalai, italian} =1 -0 = 1.

The above plausibility function indicates the maximum
degree to which specialty(villagewok) e {cantonese, hunan,
sichuan}, based on the evidence set ES1. In other words,
specialty(villagewok) € {cantonese, hunan, sichuan} cannot be
disproved based on ES1 and is therefore plausible [14].

From the definition, Bel(A) < PIs(A). Their difference,
PIs(A) ~ Bel(A) indicates the degree to which the evidence
set is uncertain whether to support A or A .

2.2 Combining Evidence Sets

A mass function is treated as some belief assignment on a
domain of values. It is possible to have multiple mass func-
tions on the same domain, which correspond to different
evidence sets. Given two evidence sets ES; and ES,, with
mass functions m,; and m, respectively, Dempster’s Rule of
Combination can be used to combine them[2]. The combined
mass, denoted m; @ m,, is defined as follows:

m@my(Z) = ¥ m(X) - my(Y)
XAY=Z
To satisfy the two properties of mass function, normaliza-
tion may be required to ensure that m; ® m, (¢) = 0, and
sum of nonzero m; @ m, values equals 1. We denote the
combined evidence set as:

ES, ® ES,

EXAMPLE. Continuing the example in Section 2.1, we now
assume that the mass function # comes from source
database DB,. For clarity, we rename m to m;. An-
other source database DB, offers a mass function m,
for the same restaurant entity type, where:

my({cantonese, hunan}) =1/2
my(thunan}) = 1/4
m2(®) = ]/4

The following table shows the intersection of the focal
elements associated with the mass functions m; and m,.
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my({cantonese, hunan}) = § | ma({hunan}) = 1 | m2(Oupeciatity) = £
m1({cantonese}) = & { x X {cantonese} %
my({hunan, sichuan}) = % |l {hunan} & {hunan} & {hunan, sichuan} %
M1 (Ogpeciatity) = & {cantonese, hunan} % {hunan} O peciatity %

In the table, each internal entry is the intersection of a pair
of evidence set members. The number attached to the entry
is a product of the m; and m, values of the two evidence set
members. The null set, ¢ occurs because {hunan} and
{cantonese} have no element in common. Since the mass
value of a null set has to be zero, a normalization is per-
formed to allocate the mass value % to the other focal ele-

ments of the combined mass function m; ® m,. The nor-

malization involves dividing the nonzero m, - m, values by
1 - x where

K= D m(X) my(Y)
xN\Y=¢
Since xin our example is 4, we derive the following m; @
m, values for our example:

1 1 1 3
m, @ m,({cantonese}) = T+ E] /1= gj =

1 1 1 1 1
my @ my({hunan}) = (3 +qy+ ﬂ} / [1 - -g—j =3
1

my, @ m,({cantonese, hunan}) = = / [1 -

. 1 1 2
1, @ m,({hunan, sichuan}) = Tz—/ 1- 517

m, @ m,(¢) = 0 (by the definition of mass function)

1 1 1 B 1
ml®m2(®specialty)_ﬂ/ 7§ _2—]

Note that after the combination of evidence sets, the
mass value allocated to the set {hunan} has increased due to
merging larger focal elements, i.e., {cantonese, hunan} and
{hunan, sichuan}. The mass value allocated to the set
{cantonese} has decreased due to conflict in merging the fo-
cal elements {cantonese} and {hunan). It is also a general
trend that large focal elements have smaller mass values
after the combination. This is due to Dempster’s rule which
reduces uncertainties after combining uncertain informa-
tion from two sources.

Considering the normalization step, the general form of
Dempster’s Rule of Combination is,

D gy M (X) -y (Y)

my @ m,(Z) = T

In case none of the focal elements of two mass functions
intersect, we use A to denote the conflicting information
provided by the source databases. Some actions may be
necessary to inform the data administrators or integrators
about the conflict. Note that the combination rule is both
associative and commutative. This implies that the order of
combining evidence is not important.
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2.3 Extended Relations

Traditional relations capture only precise and certain in-
formation. When uncertain information is involved, as in
our case of modeling information from difference sources,
an extended relation concept is required. In this section, we
define an extended relation concept that models the uncer-
tainty within attribute values, as well as the uncertainty
about the membership of tuples. This is a step beyond the
partial relation proposed by DeMichiel [1]. Her partial rela-
tion is, in fact, a special case of our extended relation.

Our extended relation differs from the traditional rela-
tion in the following ways:

* As we use extended relations to represent entity and
relationship instances, each extended relation has
definite key values.” To represent the properties of
entjty and relationship instances, nonkey attributes are
allowed to assume uncertain values. Let D(A) be the
domain of a nonkey attribute A. For uncertain attrib-
ute A, the A value of a tuple ¢ is an evidence set. That
is, a collection of subsets of D(A) can be a value for A
such that each of these subsets is assigned a mass (m)
value, i.e.,

D(A)

tAc?2 7, and

m:t.A—[0,1]

Recall that m has to satisfy the following constraint:

zxet.A m(x) =1

¢ Each extended relation has a tuple membership attribute
that models the necessary and possible degrees to
which a tuple belongs to the relation. Similar to the
other nonkey attributes of a tuple, we also assign
mass values to the hypotheses about the membership
of a tuple in a relation. The domain of tuple member-
ship attribute is the Boolean set ¥ = f{true, false}.
There are three possible subsets to which mass values
can be assigned, namely {true}, {false}, and ¥. The
evidence set for tuple membership can be denoted by
a pair of numbers (sn, sp), where:

sn = m({true})
sp = m({true}) + m(¥) = 1 — m({false})
with property 0 <sn <sp <1

A tuple with (sn, sp) = (1, 1) corresponds to one that is
believed to exist with full certainty. A tuple with
(sn1, sp) = (0, 0) corresponds to one that is believed not
to exist with full certainty. A tuple with (sn, sp) = (0, 1)
corresponds to complete ignorance about the tuple’s
membership. The range of legal tuple membership
values is shown as the shaded region in Fig. 3

The tuple membership value (s1, sp), may be obtained in
two ways. Like other uncertain information, it may be ac-
quired by voting statistics about the tuple’s existence in the
relation. In many cases, the membership of tuples in a rela-
tion is definite. Therefore, their tuple membership values
are (1, 1). Nevertheless, during the query evaluation, it is

3. Generalization to uncertain key values is outside the scope of this
paper.
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Fig. 3. Tuple membership values (sn, sp).

possible that tuples with uncertain tuple membership are
generated from relations with definite tuple membership.
The uncertain tuple membership arises because some tuples
may not qualify fully as part of a query result. In other
words, they do not fully satisfy the selection predicate
specified in the query.

Generalization of the Closed World Assumption: Tra-
ditionally, the closed world assumption (CWA) is used to
model information about entities not represented in a rela-
tion. By explicitly assuming that facts not found in a rela-
tion are considered to be false, CWA provides a means to
make query processing finite, since it only has to be per-
formed on the stored database (i.e., the extension). Since tu-
ple membership values in our extended relational model
vary in (0 < sn < sp < 1), CWA needs to be extended to CWARg,
ie, to “closed world assumption for extended relations.”
There are two possible ways to generalize CWA, namely:

1) “Any tuple not in the database must have sn = 0 and
sp=1." i.e., we assume the membership of tuples not
in the database to be completely unknown.

2) “Any tuple not in the database must have sn =0.,” i.e.,
tuples not present in the database are assumed to
have no necessary support to their existence.

In choosing the first alternative, we would have to store
tuples which are completely determined to be a nonmem-
ber of a relation. For example, if a restaurant is closed, its
tuple must still be maintained in the restaurant relation
except that its tuple membership is changed to (0, 0). Since
such tuples are usually of no interest to the database users
and will be an unnecessary burden to query processing, we
choose the latter approach in generalizing the CWA. In
other words, the integrated database will store information
about an entity iff there is some positive evidence to sup-
port its membership. Thus, if an entity is not represented in
an extended relation, its tuple membership value is (0, sp),
such that sp < 1. Observe that the standard CWA, i.e., for
regular logic, is a special case of this where sn = sp = 0.
Thus, our generalization of CWA is consistent with its stan-
dard meaning. Furthermore, CWAgg also provides finiteness
of query processing since, as shown in Section 3.6, the result
of query processing on a tuple with sn = 0 can never produce
a result with sn > 0. Thus, query processing on the extension,
i.e., stored portion, of an extended relation is sufficient.
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By attaching mass values to the subsets of attribute do-
main, and by allowing a whole range of tuple membership
values, we can effectively capture quantitative information
about the uncertainty not represented in the partial values
and may-be tuples proposed by DeMichiel [1].

3 OPERATIONS ON EXTENDED RELATIONS

In this section, we define the operations over the extended
relations. We adopt the convention of having a “#” over a
relational operator to denote the corresponding extended
operator. The new operations differ from the traditional
relational operations in several ways:

* The selection/join condition of the operations may be
composed of new Boolean predicates on attributes
whose values are evidence sets.

* Membership threshold condition may be specified within
selection/join condition to constrain the number of
result tuples.

e The results of extended relational operations either
retain or generate new tuple membership values for
the result tuples.

3.1 Selection
Our selection operation can involve Boolean predicates more
expressive than those allowed by the traditional selection
operation, since it is based on logic with support values.

Let R be an extended relation, and A De its set of attrib-
utes, excluding the tuple membership attribute. We define
the extended selection operation as follows:

orr = {r-At)|reRaty, = \
FTM(r (sn,sp), Fgq(r, P)) A Qtry )}

p . selection condition on the attribute value of
tuples in R,

Feslr, P) selection support function that returns a
(sn,sp) pair indicating the support level of
the tuple r for the selection condition P,

Fru tuple membership derivation function that

revises the tuple membership

Q : membership threshold condition that deter-
mines whether a tuple can be included in
the result set. The condition is specified
on the elements of the support pair pro-
duced by Fry,

The process of obtaining the new tuple membership of
the result extended relation is shown in Fig. 4. We now ex-
amine how Fgg(r,P), Fryy, and Q are evaluated.

3.1.1 Selection Condition

A selection condition is either an atomic predicate or a com-
pound predicate. The latter is constructed from atomic predi-
cates using conjunction (). An atomic predicate is either an
is-predicate or &predicate. The former is of the form A is
{cy, €0, -+, ¢}, and the latter is of the form A @B where A and

4. Note that the original attribute values are retained in the result. This is
different from DeMichiel’s approach which modifies the attribute values in
the selection operation.
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Fig. 4. Process to compute the new tuple membership.

B are evidence sets, c; € O4, and O € {=, >, <, <, 2. As the
attribute values involved in a selection condition may be
evidence sets, the degree to which each tuple satisfies the
selection condition must be quantified by a support pair.
Here, we present an approach to assign support pairs to
selection conditions which are atomic predicates. In cases
that selection conditions are compound predicates, we
adopt a strategy to combine the support pairs of their com-
ponent atomic predicates.

e Atomic predicate:

is-predicate
The support of an is-predicate is evaluated based on
the degrees to which an evidence set is committed to a
given set of domain values. Let P be A is {cy, ¢, -+, ¢},
where A is an evidence set and ¢; € ©,. Let Fs(r, P) =
(sn, sp). According to Dempster-Shafer theory, Fgs is
determined as follows:

sn = Bel({cy, ¢y, -+, C,})

sp = Pls{{cy, ¢y, -+, ¢,

G-predicate

Let P be the predicate A 8 B where A and B are evi-
dence sets, and f¢ {=, >, <, <, >}

Let A be

iyl myla my(a,
I:al Al 1), azA( 2), ., gﬂA( )},

where q;c © and b;  ©.

Let Fs5(r, P)=(sn, sp). The support pair (sn, sp) is com-
puted as follows:

= z(a,é)b] is TRUE) mA(a,-)~mB(bj)
SP = Z(a,«%/ maybcTRUE) mA (af)'mB(bj)
Let a;= {{Zil, sy, ﬁiv} and b]: {bﬂ' ey, b]w}

(a; 0b;is TRUE) if and only if
(Vse {1, ., D), (Vte {1, -, w)), a; 6by.
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TABLE 5::;?¢,t,, is (o) R
name | street bldg-no | phone tspeciality tbest-dish {rating t(sn,sp)
garden | univ.ave. | 2011 371-2155 | [si%3, hu®?, | [d31%°,{d35,d36}%5] | [e2®??, 9d®®, avg®'T] | (0.5,0.75)
6%
wok wash.ave. | 600 382-4165 | [si'] [@6%33,d7°33, d25%%%] | [9d*?®, avg®™®) (1,)
TABLE f}::;fmuy is {mu})A(rating is {ez}) Fa
rname | street bldg-no | phone tspeciality tbest-dish frating t(sn,sp)
mehfil | 9th-street | 820 333-4035 | [mu®®, ta®?] | [d24%4,d31%6] | [e2®8, gd"?] | (0.32,0.32)
ashiana | univ.ave. | 353 371-0824 | [mu®?,6%] | [d347%,d25°%] | [ez’] (0.9,1)
TABLE R U(rname) RB
rname street bldg-no | phone tspeciality tbest-dish frating f(sn,sp)
garden | univ.ave. | 2011 371-2155 | [si%%%°, hu®?™®, | [d31°7,d35"°) [ex®143, gd®#57] | (1,1)
80.069]
wok wash.ave. | 600 382-4165 | [si’] [d6°3,d702%, d25%%%] | [gd"] (1,1)
country | plato.blvd | 12 293-9111 | [am'] [d1°-28, 42075 lex!] 1
olive nic.ave. 514 338-0355 | [it'] [d14] [9d®®, avg®?] (1,1)
mehfil | Oth-street | 820 333-4035 | [mu'] [d24%-96°, d31°9%1] [ez'] (0.83,0.83)
ashiana | univ.ave. | 353 371-0824 | [mu’®,0%] [d34°%, d25%%) [ez!] 1,1)

(a; 8b; may be TRUE) if and only if
(Fsefl, -, vh),tell, - wh, a, 0b;

0.2

ExaMPLE. Let P be ([{1, 41°°, 2, 61 < [12, 4}°%, 5

Fgs(r, P) = (sn, sp) where
sn=06-08+06-02=06
5p=06-08+06-02+04-08+04-02=1

¢ Compound predicate:

D,

Recall that a compound predicate is formed by a
conjunction of two or more atomic predicates. In this
paper, we assume that the atomic predicates are mu-
tually independent. A discussion on combining the
supports of dependent predicates is given in [10].

Let S and T be predicates with support values (sng,
sps) and (sny, spp), respectively. Let P be the com-
pound predicate $ A T. The support of P, (snp, spp), is
computed based on the multiplicative rule in [10], [15]
as shown below:

S$Hp = SHg - SHT

Spp =5Ps ' SPr

3.1.2 Tuple Membership Derivation Function

So far, we have defined Fg(r, P), the support for predicate
P, based on the attribute values involved in the predicate.

The Fgq(r, P) of a tuple has to be incorporated into the origi-
nal tuple membership in order to derive the tuple member-
ship for the result tuple.

An obvious way to interpret the new tuple membership
value is that it should reflect the satisfaction of both the
predicate P and the membership of the original tuple. We
therefore treat the selection predicate and tuple member-
ship as independent events, and define the tuple member-
ship derivation function Fry, as follows.

Fral(sny, sp).(sny, spp)) = (s1y - 811y, 5p1 - 5p2)

3.1.3 Membership Threshold Condition

A membership threshold condition is a constraint on the
revised tuple membership value of the selection result. In
general, it can be query-dependent. However, to be consis-
tent with the interpretation of our extended relations, the
membership threshold condition must ensure that the tuple
membership values in the selection result satisfy (sn > 0).
For example, if we want only tuples that definitely satisfy
the selection condition, (sn = 1) can be given as the mem-
bership threshold condition. As another example, if we
want all tuples that satisfy the selection condition with or
without uncertainty, we can give (sn > 0) as the member-
ship threshold condition.
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13 p2
TABLE R}, x R

rname! | street! bldg — no' | phone’ tspeciality’ thest — dish
garden | univ.ave. | 2011 371-2155 | [86%%, hu®?® ©%2%] | [d31°%, {d35,d36)%)
garden | univ.ave. | 2011 371-2155 | [8i%®, hu®?®,8%%] | [d31%°, {d35,d36}°°]
garden | univ.ave. | 2011 371-2155 | [si%%, hu®?% ©°2%] | [d31%%, {d35,d36)"")
ashiana | univ.ave. | 353 371-0824 | [mu®?,6%) [d34°-8, d25°2)
trating’ rname?® | street? bldg — no® | phone? tspeciality®
[ez®32, gd®® avg®'"] | garden | univ.ave. | 2011 371-2155 | [86%°, hu®%, ©%2%)
[ex033, gd%%, avg®'7] | wok wash.ave. | 600 382-4165 | [si!)
[ez!] country | plato.blvd { 12 293-9111 | [am']
[ex!] ashiana | univ.ave. | 353 371-0824 | [mu®*, 6%

tbest — dish® trating? t(sn,sp)

[d31%%, {d35,d36}%%] | [ez®33, gd®®,avg®tT] | (1,1)

[d6%%3,d79-33, d25034] | [gd®?, avg® ™) 1,1)

[d1°'5,d20‘33, 60'17] [ez!] 1,1)

[d34°8 d25°-7) [ex!] (1,1)

ExampLE. Consider the extended relation R, in Section 1. RU S = {r’ re RA(@s) (s €SAsK= rK)}

Suppose we want to find the restaurants that special-

ize in Sichuan food. The selection operation
wsn>0
O specialty is {siy R, 1s evaluated and its result is shown in

5 n>0

Table O specialty is {si} RA .

EXAMPLE. If we want to know the restaurants (in R,) which
specialize in Mughalai food and have been rated excel-
lent, the following selection operation with complex

predicate and its result is shown in Ta-
4w s1>0

ble O (specialty is {mu})n(rating is {ex}) Ry .
3.2 Union
Let R, S be two union-compatib135 extended relations with
common key attributes K and common non key attributes
N. Let ¥ = {true, false}, and F((sn, spy), (515, 5p)) = (1, sp)
where (truesn, false]‘SP) = (truesnL , false™1 w? l_S’g‘) )

(truesnz,false1_5p2, p ZNSPZ), where @ is the Dempster’s

evidence combination operator (see Section 2.2.)

5. We say that two extended relations are union-compatible iff they share
the same set of attributes including key attribute(s).

U{S‘SGS/\(B?’) (reR/\s.Kzr‘IZ)}
u{t|(3r)(ﬂs) (reR/\seS/\t.IZ:r.K=s.K)
AVC)(CeN = tC=r.C®5.C)

A (t.(sn, sp) = Fry(r.(sm, sp),s.(sn,sp))}

The extended union operation combines both the attrib-
ute values and tuple membership values of matching tuples
using Dempster’s rule of combination. Note that for a tuple
in a relation, whose key value does not match that of any
tuple in the other extended relation, we assume that the
latter relation has total uncertainty about the membership
of the entity modeled by this tuple. Thus, the extended un-
ion simply retains the tuple from the first relation in the
integrated relation. Like the ordinary union, the extended
union is both commutative and associative.

EXAMPLE. The extended union, R, C)(mm) Ry, is shown in
Table R, U<,mm) Ry.

3.3 Projection

Let R be an extended relation, and A be a set of attributes
including the key attributes and the tuple membership at-
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tribute. We define the extended projection similar to the
conventional projection as follows:

;CARE[r.A‘reR]

The extended projection does not modify the uncertainty
information within both the selected attributes and the tu-
ple membership attribute.

EXAMPLE. The projection of rname, phone, specialty, rating
and tuple membership attributes over R, is shown in

#
Table ﬂ«'(mume, phone, specialty, rating, (sn,sp))RA .

.
TABLE T (rname,phone,speciality rating,(sn,sp)) Ra

mame phone fspeciality trating {(sn,sp)
garden | 371-2155 | [si%%, hu®,8%%] | [e2®%2, gd®® avg®'"] | (1,1)
wok 382-4165 | [si'] [9d®%%, aug®™) (LY
country | 293-9111 | [am!] lex'] (1,1)
olive 338-0355 | [it'] [gd®?, avg®™®) (L1
mebfil | 333-4035 | [mu®®,ta®? [ex®8, gd®?) (0.5,0.5)
ashiana | 371-0824 | [mu®® 8% lez!] 1,1

3.4 Cartesian Product

Let R, S be two extended relations with attributes
(excluding the tuple membership attribute) Aand B re-
spectively. We define the extended Cartesian product
similar to the conventional Cartesian product as follows:

RxS = {(t,t.(sn,sp))|(Er)(EIs)(r €cRAseSAtA=r.A

At.B=s.B

At(sn,sp) = PTM(r. (sn, sp),s.(sn,sp)))}

In addition to concatenating all possible pairs of tuples
from R and S, the extended Cartesian product also com-
bines the tuple membership attribute of tuple pairs using
the tuple membership derivation function Fry, as defined in
Section 3.1.2.

EXAMPLE. The Cartesian product of Table R, with itself is

.
shown in Table R}L‘ X Ri (to conserve space, only some

result tuples are shown; also, due to its width, the ta-
ble is split into three parts).

3.5 Join

Let R, S be two extended relations, P be the join condition,
and Q be the membership threshold condition. We define
the extended join as an extended Cartesian product fol-
lowed by an extended selection.

Rp<p S= 05| RXS

3.6 Closure and Boundedness Properties of
Extended Relational Operations

As stated in Section 2.3, we have assumed that tuples found

in an extended relation R must have at least some positive

717

evidence of their membership, i.e., sn > 0. By performing an
extended operation on R, we get another extended relation
as the result. To produce result relations that are consistent
with our interpretation of extended relations, the extended
relational operations have to guarantee the closure property
and boundedness property.

Closure Property. Let R be a list of extended relations,
ie, R = (R, Ry, -+, R;), and o0 be an nary operator. Now,
Vte o(R), t.sn > 0.

Closure property says that given input extended rela-
tion(s) that do not contain tuples with sn = 0, an extended
relational operation on the relation(s) cannot produce tu-
ples with sn = 0.

Conceptually, for an extended relation R; we can con-
sider its complementR., which has (hypothetical) tuples for

all entities about whom R; has no positive evidence, i.e.,
sn = 0. We can imagine that tuples in K have unique key

values but none of the key values appear in R;.
Boundedness Property. Let R be a list of extended rela-

tions, ie, R = (Ry, Ry -, R), RUR be the list

(R,UR,, R, :)Ez, s Rncﬁn ), and o0 be an nary operator.
[t|t € o(R) A t.sm >0} = {tlte o(RQﬁ]At.sn > O}

Boundedness property says that the result of an ex-
tended relational operation when applied on some ex-
tended relation(s) and its complement(s), and the result of
the same operation when applied on the extended rela-
tion(s) alone, contains exactly the same set of tuples with
sn > 0. Now, since the result of query processing, itself be-
ing an extended relation, must contain only tuples with
sn >0, this means that query processing on R can add
nothing to the result. This property ensures that query
processing remains finite, since it never has to be per-
formed on complements of extended relations.

The following observations are useful in proving the clo-
sure and boundedness properties of extended operators.

Observations.
It
(trueS", false'™, W _5”) = (trueS"‘, false'™ 1, W ’_5"1)
@ (’crues”2 , false! Pz, P22 ) ,
then [(s1; > 0) A (s1,> 0) = (sn > 0)].
2 If FTM((SVH, SP])/ (5n2/ sz)) = (sn3, 5P3)/
then (sn3=0) & [(sn;=0) v (sn, = 0)].

Both Observations 1 and 2 can be directly verified from
their definitions.

5

LEMMA 1. 6, 7, U, X, and <, satisfy the closure property. In
other words, let R and S be a pair of extended relations.

Vo e {0, n}, Vte o(R), t.sn >0, and

Voe (U, x, 54 ), Vi€ oR, S), t.sn > 0.
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PROOF. By its definition, ¢ satisfies closure property.

m satisfies closure property because it preserves
the input tuple membership attribute.
*

w combines the tuple membership attributes only
for the tuples that have the same key values. By Ob-
servation 1, the combined tuple membership attribute
has s > 0. For those tuples which come from only one
extended relation, their tuple membership attribute is

preserved. Therefore, U satisfies closure property.

x satisfies closure property because the tuple

membership derivation function Fry, used in its defi-
nition produces sn > 0—by Observation 2.

With Ef and x satisfying the closure property, we

also have b satisfying the closure property.
Therefore, Lemmma 1 holds. O
LEMMA 2. c}, }c, U, ><, and < ,satisfy the boundedness property.
In other words, let R and S be any two extended relations.

Yo e{c*r,;t}, {t(te O(R)/\t.SI’l>0} =

{t{t E O(RC)E]/\tS?’I >0}

Yo G{U,;(,l;d}, {t[t € o(R,S)At.sn > O};

{t' te O(RQR,S\DEJ/\ f.sn > 0}

PROOF. Since R = (R U R ) and S < (S U 3), it is clear that

Voe{:)',;t}, {tlt € o(R)/\t.sn>O}

g{t|te o(RQFjAt.sn> 0}

Yo e {U,X,M}, {t)t € o(R,S) A t.sn > O}
c {t|te D(RUF,Sugj/\t.sn > 0}

Thus, in the following, we focus on showing the
inverse is also true.

m satisfies the boundedness property since 7 does
not modify the tuple membership values of the origi-
nal relation. Any tuple in the complement of an input
extended relation will appear in the result of the pro-
jection operation with sn = 0.

We observe that the revised tuple membership

values of the U operation are obtained by the Demp-
ster’s rule of combination, i.e.,, ®. By Observation 1,
for a pair of tuples with membership values (0, sp;)

and (0, sp,), the combination produces a new tuple

with (0, sp;). Therefore, U satisfies the boundedness
property.

Let R be an extended relation. Every tuple in R has
sn = 0. By Observation 2, the sn remains zero after the

concatenation with any other tuple. Thus, x satisfies
the boundedness property.

By Observation 2, Fpy, function in the definition of

o will not change the sn value of any tuple from R.
Therefore, any tuple from R cannot be included into

the selection result, and boundness property of o is
satisfied.

Since x satisfies boundness property,

{t|te (Ri§)m_sn > 0} - {tyf c ([RQEJ
;i[sésjju.swo} o

Let T = [R U Ej X [s U §]. Since S(T U Tj = 6(T), b4

involving the complement relations does not create
extra tuples with sn > 0, thus satisfying the bounded-
ness property. O

THEOREM 1. Our extended relational operations satisfy the Clo-
sure and Boundedness properties.

PROOF. This follows from Lemmas 1 and 2. O

3.7 Correctness of Extended Relational Operations

In this subsection, we shows that our proposed extended
relational operations are correct. The correctness of the
proposed operations is evaluated based on the correct ex-
tension of the regular relational operations. We say that a
set of operations correctly extends a set of relational opera-
tions if any query result computed by the relational algebra
expression will be equivalent to the one computed by the
corresponding extended relational algebra expression.

Among the proposed extended operations, U has been de-
fined specially for the purpose of resolving attribute value
conflicts. In contrast to the regular union operation which

combines two identical tuples, w combines nonkey attrib-
utes of two tuples with identical key value. Since it is strictly
not an extension of the regular union, its correctness with
respect to regular relational union will not be discussed.

In Section 2, we define an extended relation to be one
that can represent uncertain attribute values and tuple
membership. Since an extended relation can also represent
definite attribute values and tuple membership, it is possi-
ble to represent an ordinary relation as an extended rela-
tion. The tuple membership of any tuple in such an ex-
tended relation is always (1, 1). On the other hand, given
any extended relation, we can induce from it the set of tu-
ples with tuple membership = (1, 1). We call this the in-
duced extended relation. From now on, we represent the
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induced extended relation of an extended relation R by
I(R), and the equivalent ordinary relation’ of I(R) by L(R).

Let op, and op, be an extended relational operation and a
relational operation respectively. Let R be a list of extended
relations (Ry, Ry, ..., R,). Let I(R) be the equivalent list of
ordinary relations, ie., J(R) = ((R), .., L(R)). Let S, =
L(op(R)) and S, = op(J(R)). We say that op, generalizes op,
if forany R, I(S,) = S,

LEMMA 3. The extended selection operation generalizes the regu-
lar selection operation.

PROOF. Recall that the extended selection is defined as:
oI R={(r.4 ¢
En(r-(sn, 5p), Fis(r, P)) A Qltr)}

) re Raty, =

Let S,= (6% R) and S, = 6pI,(R).

To prove Lemma 3, we need to show that I(S)) = 5,

Suppose t € S,. By the definition of I, £.(s1, sp) = (1, 1).

Moreover, t € R and Fpy(t.(sn, sp), Fss(t, P)) = (1, 1).

This implies that Fss(t, P) = (1, 1).

By carefully analyzing the definition of Fgg, t must
fully satisfy the predicate P.

Therefore, + without tuple membership e I(R).
Since f fully satisfies P, t without tuple membership
can be found in S, .

Suppose s € S,. In other words, s with tuple mem-
bership (1, 1) € R and s fully satisfies the predicate P.

Therefore Fry(s.(sn, sp), Fss(s, P)) = (1, 1) and s with
tuple membership (1, 1) can be found in S,.

With the above analysis, we conclude that Lemma
3 holds. O

LEMMA 4. The extended projection operation generalizes the
regular projection operation.

PROOF. Recall that the extended projection is defined as:

;rAR = {T.A‘V € R}

Let S, = IC(NA Rj and S, =7, [(R). Since 7 does

not modify the tuple membership at all, a tuple ¢ ap-
pears in S, if and only if it has tuple membership (1, 1)
and t without tuple membership should also appear
in S,. Hence, Lemma 4 holds. O

LEMMA 5. The extended Cartesian product operation generalizes
the regular Cartesian product operation.

PROOF. Recall that the extended Cartesian product is de-
fined as:

6. That is, the tuple membership attribute is removed.

7. Since the membership threshold condition Q does not exist in the
regular selection operation, we prove this lemma under the assumption
that Q allows the tuple membership of (1, 1).

RXSE{(t (sn, )|(EIr)(EIs(rer/\seS/\
tA=r.Art.B=sBAa
t.(sn, 5p) = Fpy(r. (sm, sp), s.(sm, sp)))}

Let S, = IE[R x sj and S, = [,(R) x [(S). A tuple

appears in S, if and only if there exist r and s, from R
and S respectively, such that r.(sn, sp) = s.(sn, sp) = (1, 1)
(due to the definition of Fryp. This can happen if and
only if r and s without tuple membership appears in
L(R) and I.(S) respectively. Hence, ¢ without tuple
membership exists in S, and Lemma 5 holds. |

With Lemmas 3 and 5, the following corollary holds.

COROLLARY. The extended join operation generalizes the regular
join operation.

In the above, we have excluded the lemma for extended
union since our extended union operation is strictly used
for integrating attribute values in contrast with the regulax
union operation which can only merge tuples with identical
attribute values.

THEOREM 2. Our proposed extended operations correctly extend
the relational operations {cr, 7T, X, < }

PROOF. Due to Lemmas 3, 4, 5, and the above corollary, a
query computed by a relational algebra expression con-
sisting of {6, T, X, ><1} will have a result identical to

the one computed by the corresponding extended rela-
tional algebra expression cosisting of {d, T, X, > }

Hence, the theorem holds. O

4 EXTENDED EXAMPLE

In this section, we provide a sample session to illustrate the
use of the extended relational model to resolve attribute
value conflicts and to process user specified queries.
Consider the integration example in Section 1. Recall that
the relations have been preprocessed and common keys
between two relations can be used to identify tuples mod-
eling the same real world entities. We are now left with the
tuple merging process before arriving at the integrated re-

lations.

4.1 Tuple Merging Process

To merge the tuples from DB, and DBp, the extended union
operations: R, C) Ry, RM, LZ RM, and

(rname) (rname, mname)

.
M, Y mmame) M, are required. Let the three integrated rela-

tions be R, RM, and M respectively. Since R, Upuume) Rss

has been shown in Section 3.2, we will just illustrate the
latter two below:
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TABLE RM = RM, O(Tname,mname) RM3z

rname | mpame | position | f(sm,sp)
garden | hwang | owner (1,1)
garden | lim pub-rel (1,1)
wok hwang | owner (1,1)
country | jim executive | (1,1)
mehfil jaideep | executive | (0.8,0.8)
olive shashi | executive | (1,1)

TABLE M = Ma O(mname) Mg

name | phone t(sn,sp)
hwang | 624-7807 | (1,1)
lim 625-9631 | (1,1)
jim 951-1234 | (1,1)
jaideep | 625-4012 | (1,1)
shashi | 625-1234 | (0.7,0.9)

4.2 Query Example

Suppose we are interested in the manager name and restau-
rant name for those restaurants which offer mughalai food
and are rated as excellent. The algebraic expression of this
query is written as:

% [sn>0]
T (RM .rname,mname] [sp ecialtyis {m"‘})/\[" atingls {ex}]

[><]( rname=rname) RM

The steps taken to evaluate the above query are shown
below:
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STEP 1 (EXTENDED SELECTION OPERATION). The selection op-
eration on R (see Section 3.2) filters off those tuples
which do not have necessary support on either of the

two selection predicates. Note that in Table
x (sn>0)

Tl = O(specialty is {mu})A(rating is {ex}) R, above, the selected
tuples have revised tuple membership values.

STEP 2 EXTENDED JOIN OPERATION. We perform extended
join as a Cartesian product followed by a selection
operation. The restaurant “ashiana” does not have
any manager, and is removed during the join. This is

illustrated in Table T, = T, >

rname=rnanie)

STEP 3 EXTENDED PROJECTION OPERATION. The following
projection retains the required attributes as well as the

orginal tuple membership.

.
TABLE T3 =% (M .rname,mname) 12

RM.urname | mname | {(sn,sp)

mehfil jaideep | (0.66,0.66)

Thus, the result of the example query is contained in re-
lation Tj.

5 COMMENTS ON EXTENDED RELATIONAL MODEL

5.1 Tradeoff Between Scalability
and Expressiveness

The extended relational model presented in this paper at-
tempts to represent uncertain information that can arise
during data integration. Based on the Dempster-Shafer the-
ory, the model allows an attribute value to be a collection of
subsets of the domain such that each subset is assigned a
mass value. Since the number of possible subsets of a do-
main may potentially be large, the computation involving
such an attribute value can be time consuming, thus af-
fecting the scalability of this approach. Nevertheless, in a
practical situation as suggested by [9], it is possible to place
restriction on the size of domain (e.g., restricting the do-
main size to be two), or the size of the focal elements (e.g.,
restricting the size of focal elements to be one) to improve
the efficiency of manipulating extended relations. Essen-

« (57>0)
TABLE Ty =0 (speciatity is {mubA(rating is {ez)) B
rname | street bldg-no | phone fspeciality tbest-dish frating | {(sn,sp)
mehfil | 9th-street | 820 333-4035 | [mul] - [d24%-9%% @31%-931] | [eg!) (0.83,0.83)
ashiana | univ.ave. | 353 371-0824 | [mu®®,0%1] | [d34%%,d25°7) lez'] | (09,3)
TABLE T2 = Tt W(rname=rname) RM
Tlrname | street bldg-no | phone tspeciality
mehfil 9th-street | 820 333-4035 | [mu!]
tbest-dish frating | RM.rname | mname | position | {(sn,sp)
[d24%-%°, 33199 | [ex'] mehfil jaideep | executive | (0.66,0.66)
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tially, this kind of restriction sacrifices the expressive power
of extended relational model in exchange for time efficiency
and the appropriate decision must be made with respect to
the application domain.

5.2 Relationship Between the Proposed
Extended Relational Model and Others

While the extended relational model presented here stems
from the Dempster-Shafer theory, it would be interesting to
compare it with other extended relational models that are
based on probability (e.g., PDM [13]) and fuzzy theory (e.g.,
[16], [17]). In the probabilistic relational model and also re-
lational model based on Dempster-Shafer theory, the at-
tribute value can assume stochastic values. In the former, a
probability is assigned to each possible domain value of an
attribute such that the sum of probabilities for all possible
domain values = 1 (including the missing probability
which is the probability assigned to the entire domain due
to incompletely specified probability distribution). Fig.5
depicts an example of a probabilistic relation in the PDM
model. In the latter, a mass value is assigned to each possi-
ble subset of domain values of an attribute such that the
sum of mass values for all possible subsets = 1. By restrict-
ing the size of domain subset to one (except the set © that
represents the entire domain), the latter is reduced to a
probabilistic relational model. In other words, our pro-
posed model generalizes the probabilistic relational model.
With this generalization, our extended model allows a wide
variety of uncertain attribute values that can be represented
by some stochastic model.

TABLE Restaurant

rname | speciality best-dish

0.5 [sichuan] | 0.5 [d31]

garden | 0.25 [hunan] | 0.5 [d32]
0.25 [0]

country | 1 [american] | 0.3 [d2]

0.7 [d3)

Fig. 5. Example of PDM relation.

In contrast to our proposed model and the probabilistic
model, the fuzzy relational model is based on fuzzy set and
possibility theory. Instead of using mass value assignment
or probability distribution function, fuzzy relations model
their attribute values as fuzzy sets. Each fuzzy attribute
value is defined by a possibility distribution function.
Moreover, a possibility distribution function g is defined to
map each tuple to a value over [0, 1] to indicate its member-
ship in the relation. Unlike probability or mass value as-
signment, the sum of all possibility values with respect to
an attribute value do not have to be one. An example of a
fuzzy relation containing music club member information
is shown in Fig. 6. In the relation, the possibility values of
Tom having Beethoven, Chopin, and Mozart as his favorite
composer are 0.5, 0.7, and 0.2 respectively. Moreover, the

possibility value of Tom being a club member is 0.6. Note
that the sum of possibility values for Tom’s favorite com-
poser is not one. While certain attributes are better modeled
as fuzzy sets, there are also attributes which are more ap-
propriately modeled as probabilities or evidence sets.
Therefore, an appropriate modeling decision can only be
made based on the actual application domain.

TABLE Music — Club

name | favorite-composer |
0.5 [beethoven]

tom | 0.7 [chopin] 0.6
0.2 [mozart)

mark | 0.4 [brahms] 1.0

Fig. 6. Example of fuzzy relation.

CONCLUSION

We have presented in this paper an approach, based on the
Dempster-Shafer theory of evidence, to resolve attribute
value conflict between relations from independently devel-
oped databases. We demonstrate that relations modeling
both entity and relationship types can be integrated in a
uniform manner. An extended relational model has been
developed to capture imprecision and uncertainty in infor-
mation. Our model can capture information about entities
whose membership may range from full certainty to totally
unknown. An attribute value in general is a collection of
subsets of values with some probability assignment. We
have also formally defined a set of extended operations that
manipulate the extended relations. An extended union op-
eration is given to combine uncertain attribute values using
Dempster’s rule of combination. A prototype based on our
approach has been implemented in Prolog, and its results
are reported in [18].

Attribute value conflict resolution is a major task to be
dealt with in database integration. In processing a federated
database query, attribute value conflict resolution may have
to be performed whenever information about real world
entities exists in different databases. Our ongoing research
is developing mechanisms to do so.

In the following subsections, we list several topics that
need to be addressed as future work

6.1 Modeling of Complex Attributes

So far, our extended relation has only considered simple
attributes. Each simple attribute has a domain consisting of
atomic values. In some cases, the attribute of a class of real
world entities can assume some compound value. For ex-
ample, the attribute Name of a Person entity can made of
constituent  attributes FIRST NAME, INITIAL, and
LAST_NAME. In other cases, due to interdependency be-
tween two attributes, e.g.,, SALES_RECORD attribute de-
termines BONUS attribute, it is appropriate to treat the two
together when the mass values are assigned. Representing
and manipulating complex attributes or combinations of
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attributes in the extended relational modelis a subject of
our future research.

6.2 Integration Strategies

In this paper, we introduce Dempster’s rule of combination
as a formal approach to combine the attribute values. The
commutativity and associativity properties of the extended
union operator and other algebraic properties of our ex-
tended relational operations can allow flexibility in decid-
ing the order of integrating the source relations. For exam-
ple, to integrate four source relations, each at a different
site, we can have itwo of them integrated by a processor,
and another two of them by a different processor. The in-
termediate relations produced are then further integrated
by a third processor. The selection of the minimum cost
strategy is an optimization problem.

6.3 Query Language Extension

As suggested by the set of extended relational operations,
we propose extensions to existing query languages for
posing a query declaratively. We believe that such exten-
sions can be developed based on the SQL language which
has become a standard.

6.4 Uncertainty Filtering

It is sometimes useful to derive definite attribute values
from the evidence sets for all the relations. For example, we
may want to remove the uncertainty from all relations in
the integrated database in order to apply the traditional
relational operations. We call the operation that performs
this a filter. Although we may use a series of extended se-
lection operations to construct a filter, care must be taken to
prevent the violation of referential integrity in the resulting
relation. This situation will arise when a relationship in-
stance is retained while its related entity instance has been
filtered. In this case, it is perhaps appropriate to define a
filter operation that examines the relationships between
entities before the entities are removed.
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