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ABSTRACT

This paper provides an overview of the DAMSEL project, and the temporal language component
of DAMSEL. The temporal component is one of three language components, and part of a framework
being implemented at the University of Minnesota. DAMSEL is comprised of an embedable dynamic
multimedia specification language, and supporting execution environments. The goal of DAMSEL is
to explore language constructs and execution environments for next-generation interactive multimedia
applications. DAMSEL supports dynamic, event-driven specifications for the retrieval, presentation,
modification, analysis, and storage of multimedia data. Dynamic specifications enable system, applica-
tion, and user-media interactions to affect the run-time behavior. The temporal language component
of DAMSEL contains two primitives for event-driven temporal specification — supporting causation and
inhibition. Specifications require (extensible) behavioral parameters to be chosen, enabling very pow-
erful temporal relations to be defined. The other two components handle the modification, analysis,
presentation and storage of multimedia data. DAMSEL components support conditional and constraint
logics, enabling more complex specifications than currently possible. DAMSEL also supports an open
systems view, enabling current software to be used within it’s architecture.

keywords: multimedia, specification language, synchronization, event-driven, run-time event man-
ager, embedded language, event detection

1 INTRODUCTION

The demand for, and use of multimedia has grown rapidly. One area of particular importance is
the development of languages that enable programmers to easily write interactive applications which
can retrieve, view, modify, analyze, and store multimedia data. DAMSEL, a DynAmic Multimedia
SpEcification Language, addresses these issues using three language components and underlying exe-
cution models: the dynamic event-driven temporal component, providing the interaction-driven media
and event orchestration mechanisms; the dataflow component, handling retrieval, modification, analysis
and storage; and, the presentation component, handling the presentation/viewing of multimedia. At
one end of the spectrum, we find proposed (and implemented) languages allowing simple static mul-
timedia presentations to be defined. At the opposite end, we find languages, such as DAMSEL, that
enable dynamic interactive multimedia applications to be created. DAMSEL is composed of just a few
predicates which can be embedded within another language, eliminating the need to learn and use an
entirely new language, compiler, and programming environment. The goal of DAMSEL is to explore
language constructs and supporting execution environments for next-generation interactive multimedia
applications. The basic features of DAMSEL include declarative specifications (strictly non-procedural),
expressiveness, simplicity, conditional and constraint logics, extensible behavioral specification parame-
ters, programming language-embedable, and an open systems approach enabling current software to be
integrated. In addition, we are investigating a subclass of complex sequence-based event detection (time-



sequence detection) and the creation of a time-sequence event definition language to detect motion-based
user interaction.

In section 2, we present an overview of DAMSEL, it’s architecture and language components; this
is followed by the details of the temporal language component in sections 3; section 4 will contain a
discussion of logic support within DAMSEL, followed by a few brief examples in section 5. In section
6, we discuss in some detail, comparisons to other implementations; and, we finish with a summary in
section 7.

2 OVERVIEW OF DAMSEL

DAMSEL is being embedded within C++, and includes a specification pre-processor and run-time
event manager. As described above, DAMSEL has three components that provide high-level constructs
for creating interactive applications capable of retrieving, modifying, analyzing, viewing and storing
multimedia data (see Figure 1).
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Figure 1: Overview of DAMSEL components.

The foundation of DAMSEL is the event-driven temporal language component. Specifications are
defined by users and application designers to represent the behavior of the system. Each statement
within a specification defines either an excitatory or inhibitory relationship between some set of events.
Simply, when one event occurs, it excites (or causes) another event to occur (or inhibits another event
from occurring). Since system, application and user interactions are interpreted as events, the actual
behavior of the system is determined only at run-time as occurring events cause other events to be
generated, based upon the pre-defined specifications. In addition, the behavior of each statement within
a specification is dictated by an extensible set of behavioral parameters. It is this, in part, that enables
DAMSEL to express all of the temporal relationships expressible in any of the sixteen other models we
compared”?2. The language of the temporal component will be introduced in somewhat greater detail
in section 3.

The dataflow component uses a stream model (similar to another model?!), in which multimedia
sources and sinks are specified. The media objects are modeled as continuous streams, flowing from
sources to sinks. The component is used to retrieve and store data by specifying sources and sinks,
which may include distributed devices, and stored or live data sources. In addition, streams can be
modified or analyzed as they flow by inserting operations (image processing, filters, etc.) between the
sources and sinks. The operations can be defined internal to DAMSEL, or they can be independent
external processes.

The presentation component supports specifications related to the presentation of multimedia data,
such as simple windows and more complex layouts. This component has a presentation server which
manages the delivery of streams to complex layouts. The layouts can be defined internally, or externally
using a graphical language toolkit for example. An overview of DAMSEL’s execution environment is
shown in Figure 2.
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Figure 2: DAMSEL’s Execution Environment

Since specifications from these last two components can be used within specifications from the timing
component, which is event-driven, DAMSEL also supports dynamic dataflow and presentation specifi-
cations rather than purely static ones — therefore, user, system, and application events can affect the
run-time behavior. This means that the stream definitions and presentation layouts can dynamically
change due to interactions at run-time.

The specification pre-processor handles specifications embedded within C4++ programs. The output
generated includes the C++ programs, C++ code to support run-time execution, and the temporal,
presentation and dataflow specifications in a format understood and managed by the run-time event
manager /scheduler. Other implementations of event managers exist, such as Glish?”, but they would
need to be extended to provide the necessary functionality to be used within DAMSEL’s interactive
multimedia application environment. DAMSEL supports C++ methods to enable users to cancel (or
remove) specification statements at run-time, and to register /submit statements on the fly (at run-time).

In an effort to investigate the specification of conditionals and constraints, DAMSEL supports a basic
set of temporal and causal logic. We also have defined an extensible mechanism in which conditionals
and constraints may be defined within the presentation and dataflow component specifications.

3 THE TEMPORAL LANGUAGE COMPONENT OF
DAMSEL

Some simple multimedia applications include presentations, in which a score is defined indicating
when each media or multimedia object should be displayed on the screen. It may be a simple sequence,
or a complex orchestration. (A multi-media object is an object composed of multiple data types —
e.g., an audio-video object; whilst a media object is composed of a single type. We will use the terms
interchangeably, and note if a distinction is required.) The notion of a score, or “temporal ordering”
information, will be used by many multimedia-based applications to orchestrate the delivery of each
media object. This information is generally specified by a user/programmer using a graphical interface
or specification language, and then stored within the application or the multimedia objects themselves.



The set of temporal orderings is called a temporal specification; its structure is regulated by a temporal
specification model. There is a wide range of proposed (and implemented) temporal specification models
to date. At one end of the spectrum, a temporal specification model may be static, only allowing the time
of delivery to be tied to a clock. At the opposite end, a model such as DAMSEL has, will support dynamic
interaction-driven specifications by enabling a behavior of the system to be specified, while the actual
execution (different for each user) will depend upon system, application, and user-media interactions (as
well as resource availability and data loss, for example).

In addition, a finer level of synchronization is required to coordinate the presentations of media
objects that have a high degree of temporal interdependency. Finer degrees of synchronization specified
between media objects produce the synchronized presentation of related fragments of the media objects.
An example is the synchronized playout of a video and its related audio, maintaining lip-synchronization.

Several different models supporting temporal specifications have been defined. Blakowski® defined
three primary approaches:

e Hierarchical. - Using a tree structure, temporal relations are constructed using internals nodes
(generally either ‘parallel’ or ‘serial’ temporal relation operators), and leaf nodes (media objects).

e Timeline. - Temporal relations are specified by indicating the start (and perhaps end) times of
the media object presentations using implicit or explicit timelines.

e Synchronization points. - The temporal relations are defined by logically connecting together
the synchronizing points that have been inserted within the different media objects. Each object
encountering a synchronizing point waits until all objects sharing this point have also reached it
(like a parallel-join).
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Figure 3: Current Language Approaches

More recently, several models including DAMSEL have since been developed using a fourth approach
based upon events. This event-driven approach involves synchronizing the begin/end points (and perhaps
any point in between) of a media object’s presentation to the occurrence of other events. Supported
events may include system events, application events, user-defined events and events associated with
the execution of a media object. Figure 3 illustrates the current types of implementations, the timing
approaches used, and the possible components of an implementation (which support timing, presentation,
and run-time modification/analysis of multimedia data).

The temporal component of DAMSEL?? is based upon an event-driven approach and includes two
simple, yet powerful relations for expressing activation, inhibition and fine-grain synchrony.



3.1 Objects in DAMSEL

In our language, temporal objects are the model elements upon which relations are specified. Tem-
poral objects include media objects, events and timepoints.

Media objects. = Within an object-oriented environment, media objects may be modeled in different
ways and have different meanings. Several multimedia data models have been proposed*®~11. We define
media objects as instances of media classes that represent both time-dependent (continuous), and time-
independent (non-continuous) data types. In general, relations are defined on media objects with respect
to their entire interval, called interval specification, or, with respect to their endpoints, called endpoint
specification.

Current timeline models'? and hierarchic models®13:14:15:21:25 yge interval specification. Allen’s
work'® also discusses relations on intervals within his conceptual level specification. Endpoint spec-
ification has been used in synchronization point models?%24 and event-driven models like DAMSEL
1,8,17,18,20 = At a conceptual level, endpoint relations have been defined by Esch and Nagle'®. These
models will be discussed in more detail in section 6.

In addition, we classify media objects as either having a predictable or unpredictable duration ©2°. The
duration of most media objects are predictable. An unpredictable duration may involve media objects
having one of the following: no inherent consumption rate, such as images; a flexible consumption rate,
such as text; or, media objects that are being recorded in real-time, such as a video conference call.

Events. As stated above, the endpoints of media objects can be tied to events. Specifically, the
beginning of an interval has a begin event, while the end of an interval has an end event. To provide
additional flexibility, events can be defined at a finer grain within media and multimedia objects. For
example, we could attach an event to the beginning of a particular sample associated with the start
of a word within an audio clip. This is easily done when a flexible data model has been defined.
User- and application-defined events are additional temporal objects that can be used within a temporal
specification in DAMSEL.

Unaffectable dI fined Affectable
Events User-define Events
Interrupts Events
- End Other
TimeEvents Messages System-defined Events Simple Media
Events Events
. Spontaneous
Condition-based Copntent-driven Application Begin
Events Events Events Events

Figure 4: Event Types in DAMSEL

In addition, if image or sound analysis (and pattern-matching) is available, we may define events
associated with the occurrence of a particular sound or image within the audio or video presentation.
Fujikawa'” discusses the automatic generation of events corresponding to spontaneous actions within
media objects, such as video.

Using an event-driven approach, DAMSEL must characterize events as being either affectable, or
unaffectable (see figure 4). Affectable events are those that the system can cause to occur (as such,
methods must exist that enable the system to cause the events to occur). Therefore, events can also be
associated with any method code.

There are two categories of unaffectable events, those that contain conditional logic and those that
exist outside of the domain or control of the system (such as time events, interrupts, and messages).
Unaffectable events that have been associated with statements containing conditional logics will occur



when the condition becomes true. For example, we can associate an event A with the simple condition
of X=2 or X > 2 becoming true. Further, DAMSEL’s temporal language component supports notions
from temporal logic, so we could define an event that will become true such as when EVTx > EVTy
— that is, it will become true (if and) when event x occurs after event y has occurred. Temporal logic
can be applied to events and intervals. Support for temporal logic is discussed further in section 4. It
should be emphasized that any number of events (affectable or unaffectable), and simple conditions can
be combined to create more complex, or composite events.

User, system and application-defined events may be either affectable or unaffectable. These may
include events such as waiting for: a mouse-click, a specific point in time, an interrupt or message, or for
a red balloon to appear in a frame of a video, all of which are unaffectable; or, causing: the closing of a
window, the ending of a presentation of a video stream, or the starting of an audio stream, all of which
are affectable events. In addition, events can be instantaneous (such as those described above), or they
may have a duration. Events having a duration are bounded on each side by an instantaneous event,
and define an interval (e.g. the interval-based event, displaying a video, is bounded by the starting of
the video and its termination — which are both instantaneous events).

Timepoints.  Timepoints are instants in time associated with user-defined timelines, i.e., they have
no duration. Timepoints are used to specify starting and/or stopping points for media objects. We can
specify a timepoint, such as t0 + 3 minutes, whose origin (t0) is one of several possible local clocks,
perhaps associated with the beginning of a presentation. This is classified as a relative time point. We
may also specify a timepoint — e.g., 12:45pm — with respect to world time (perhaps Greenwich Mean
Time). Lastly, we can instruct the system to generate an event when some designated timepoint occurs.

3.2 Temporal Predicate Parameters in DAMSEL

DAMSEL’s temporal predicates are augmented by the concepts of derivable starts, delayed starts
and finishes, and behavioral descriptors:

Derivable starts.  Derivable starts permit a temporal specification that only involves specifying the
interval’s end point — that is, when the interval will end. We then leave it up to the system scheduler
to determine a proper start time for the interval’s start point to satisfy this constraint. This is only
applicable to intervals whose duration is known in advance.

Delays. In order to extend the flexibility of a temporal specification, DAMSEL supports delayed
starts and finishes. In DAMSEL, delays may be specified as positive ranges, or negative ranges. Thus,
we can express such specifications as “event x starts 30 to 33 seconds after the occurrence of event y”.
Ranges provide another dimension to defining delay specifications over single-valued delays. In addition,
precise timing specifications using single-valued delays are generally unachievable??.

Range delays were discussed extensively by Steinmetz?, and later by Buchanan?® as a means of
supporting additional flexibility in specifying start and finish times. Using endpoint specifications in
conjunction with range delays, one may define 48 different temporal relations (using just one of the
predicates) in DAMSEL between two media objects.

We felt that negative delays should be supported as it is easy and natural to express temporal
relations such as: “Start the soundtrack three minutes before the movie begins.” (We can eliminate
the negative delay by reversing the dependency, but the resulting statement will not be equivalent.)
Negative delays are supported when the triggering or anticipated event, (e.g., the start of the movie)
is predictable or derivable. As the event minus three minutes approaches (using the example above),
the system continuously updates the expected occurrence of the event. At a point three minutes plus
delta before the event occurs, the system generates the triggering event. In reality, it is possible that



the anticipated event may not occur due to some unforeseen problem, such as a network failure; this is
equally true in real life (e.g. a movie projector breaking just before the movie should begin, while the
projectionist had already started the soundtrack).

Behavioral Descriptors.  Current approaches have inherently defined the behavior of their specifi-
cations. That is, the implementation (or behavior) of a specification is pre-determined. However, some
flexibility of specification is possible with the restricted blocking mode defined by Steinmetz?, which
allows the programmer to specify what should occur while waiting for all streams to arrive at the next
synchronization point.

The approach DAMSEL has chosen is to separate the specification from the system implementation
of the specification. One parameter of every specification is then a set of zero (indicates the use of
system default behaviors) or more behaviors, or programmer-defined extensions which describe how
the specification should be executed. Behaviors are classified using three categories to indicate when
the behaviors are executed: activation, execution, and termination. Behaviors are used to override the
system default behaviors provided. The behaviors can be overloaded by (event) data type, and new ones
can be added at any time, resulting in very flexible specifications and language extensibility. Activation
behaviors specify what should happen just prior to the execution of the event. For example, they may be
used to randomly generate parameters for event invocations, perhaps varying the playout of a music piece
by tempo and octave. Execution behaviors can be used to control “how” the event should be executed,
such as fine-grain synchronization of a video and audio stream. Termination behaviors can be used to
control what should happen after an execution, and prior to event termination — such as repeating the
event z times.

3.3 The temporal predicates in DAMSEL.

In this section we describe the predicates in the temporal language component of DAMSEL. We
implement activation and fine-grain synchronization using the predicate “causes”, and inhibition using
“defers”.

Activation. Within DAMSEL, we define causality (activation) using two events, x and y, such that
“the occurrence of event x causes the occurrence of event y,” where event x is the triggering event and
event y is associated with some action that will be invoked. Causal relations are defined using the
predicate causes. It takes two events, EVTx and EVTy; an optional range delay interval, r_delay (d;,d;);
an optional set of system-defined extensions (behaviors), and a statement name, s;:

si::causes ( EVTx, EVTy, r_delay, {set-of behaviors} )

EVTy
EVTy — EVTy
may or may o will may or may
not occur :occur not occur

; -
EVTx d Assumes d.=0

Figure 5: The nature of causes.

The basic specification should be interpreted as: “The occurrence of EVTx will cause the occurrence
of EVTy. EVTy will occur at (the occurrence time of EVTx + a valid value within the range d), executed
using the specified set of behaviors.” Figure 5 illustrates the basic idea: prior to the occurrence of EVTx,
EVTy may occur anytime by any other means; after EVTx occurs, during the interval bounded by the
occurrence time of EVTx + d; and d;, EVTy will be caused to occur; after this time, EVTy may or
may not occur by other means. Note that EVTx can be defined as any event or condition composed of



DAMSEL'’s conditional logic and standard C++ logical and relational expressions using global variables.
In addition, EVTy can be a set of events.

As an example of a system-defined extension, one might pertain to the behavior of the range delay. A
range delay activation behavior might characterize the delay range such that a higher priority is assigned
to earlier values in the range over later ones. In this case, the system scheduler would attempt to schedule
the event as early as possible within the specified range. Omitting the specification of such a behavior
would enable the system default, which assigns equal priority to all values in the entire range. Remember
that an event, as described in section 3.1, can be many things — providing DAMSEL with a very powerful
model.

Inhibition.  While activation brings about the occurrence of an event, in DAMSEL we define a means
to inhibit (or defer) an event from occurring. Deferment could be thought of as an inhibitory synapse
which is applied to a neuron (event) to inhibit it from firing, while causation is similar to an excitatory
synapse which causes a neuron (event) to fire?S. Basically, we define deferment using an event x and an
interval t (which may be reduced to an interval of no duration, or an event), such that : “event x cannot
occur at least until the end of t occurs.” For instance, if a video is presented with background music,
we may desire to have the music last (at least) as long as the video (this is a concern if the duration of
the music may be shorter than the video). To do this, we defer the end event of the music at least until
the end event of the video occurs. Note, however, that the end event of the video will not cause the
occurrence of the end event of the music; this must be specified using causality. To be clear, deferment
cannot be implemented using causality.

In DAMSEL, deferment is specified using the defers predicate. It takes one event, EVTy, an interval
event INTa, an optional delay value, D, (default = 0), an optional set of system-defined extensions (as
described earlier), and a statement name. It has the following form:

soi:defers ( INTa, EVTy, D, {set-of behaviors}).

EVTy
— P
may or may : cannot : may or may
not occur : occur ! not occur
—INTa— Assumes d =0

Figure 6: The nature of defers.

This specification should be interpreted as: “INTa defers EVTy”; or, not quite so terse as: “if event
y would occur during interval a, the occurrence of event EVTy will be deferred at least until after the
occurrence time of interval a’s end event (+ delay value D).” Figure 6 illustrates the basic notion of
defers: Prior to interval A, EVTy may or may not occur; during interval a, EVTy cannot occur; and,
after interval A, EVTy again may occur — but defers will not cause it to occur (by default). As above,
EVTy can be a set of events to be deferred. In addition, INTa can also be specified as any two bounding
events, EVTa and EVTb, which describe some interval. Thus, we can interpret this statement to mean:
“when EVTa occurs, defer EVTy until the occurrence time of EVTb (4 delay value D).”

The deferment of an event can have several implementation behaviors. For some events, it may
be desirable, if possible, to actually disable the causing factor of the event (such as disabling a menu
option). If the deferred event is an end event, by deferring it the duration of the associated interval may
be affected. In the above example, we could select an execution behavior that will either play the music
more slowly, extending it’s duration to last as long as the video, or, repeat the music until the video
ends. At the implementation level, within DAMSEL’s object-oriented environment, objects may define
their own methods to handle a defer-related invocation.



Fine-grain Synchronization. = When we require a finer degree of synchronization between intervals
than just starting and stopping at the same time, we need to be able to express this requirement to the
system. Fine-grain synchronization can be used to define synchronizing relationships between intervals
that are playing simultaneously. In general, fine-grain synchronization is required when fine timing
relationships exist between the atoms that make up the intervals (e.g. video frames are the atoms of a
video clip).

A number of different approaches exist within current models for fine-grain synchronization. Some
models provide only one level of synchronization, while others provide variable levels of synchronization®.
For example, 0.0 might be specified for unrelated media objects (two independent movies playing simul-
taneously), while 0.7 would maintain lip-synchronization, and 0.9 when synchronizing channels of high
fidelity audio (where 1.0 is perfect synchronization). Some models treat fine-grain synchronization as an
extentional relationship specified on intervals®%24. In turn, temporal relationships are actually specified
between the atoms of the related intervals.

Fine-grain synchronization in DAMSEL is specified using the primitive causes and a system extension.
We have also created an equivalent predicate, synchs. It takes two intervals INTa and INTb, where INTa
and INTb may or may not have the same length; a synchronization factor, synchf, to support variable
level synchronization; and, an optional set of system-defined extensions, for the behavioral specification
(similar to Gibbs?!). The synchs specification has the form:

synchs(INTa, INTb, synch f, {set-of behaviors}).

This should be read as, “synchronize the presentation of the atoms of INTa to the atoms of INTb,
at least to the degree specified by synchf.” The intervals may have different lengths, so what actu-
ally occurs at implementation is specified using system-defined extensions.) We support enumerated
values for synchf, such as: “High Fidelity Audio”, “High Definition Audio/Video”, “Standard Audio”,
“Standard Audio/Video”, etc. These values carry additional meaning that help to define second and
third-order constraints at the implementation level. This approach enables the enumerated values to be
mapped to any underlying implementation. It also provides a suitable level of abstraction, allowing the
user/programmer to select a value without having to know how it will be implemented.

3.4 Specification Conflict Resolution.

Conflicts within a specification may occur — for example, one statement may specify to cause an event
x some at time between to and t4, while another statement specifies that event x should be deferred from
to through t3 (the specification for this situation is below). Within any approach which supports both
activation and inhibition, conflicts within a specification may result. We can resolve some conflicts at
compile-time using static conflict resolution, when specification statements are attached to some timeline
(global or local clocks). However, within a dynamic event-driven system, statements may not be attached
to a timeline, but only to the occurrence of other events. In these situations, conflicts must be resolved
at run-time using dynamic conflict resolution.

causes ( event(time(ts)), EVTX, (0,2*unitTime) );
defers ( interval(time(to),time(ts)), EVTx );

Static Conflict Resolution.  Static conflict resolution requires that some rules be defined to resolve
conflicts at compile time. Figure 7 illustrates the example introduced above which has a conflict that
needs to be resolved (note that many possible conflicts are possible). In this example, one statement
defers event x, while another causes event x during intervals that overlap. Several possible resolution
policies may be used, such as truncating one or the other interval (by modifying the specifications), so
no overlap occurs; or, perhaps eliminating one of the statements. Conflict resolution policies may be
specified within a rule-base system using simple precedence order, or more complex hierarchical-based
approaches.
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Dynamic Conflict Resolution.  Dynamic conflict resolution is required when the conflicts cannot

be detected at run-time. An example of one possible run-time conflict is shown in figure 8, and it’s
specification is below. The first statement specifies that event x should occur sometime between [the
occurrence time of event z + 0 secs] and [the occurrence time of event z + 300 secs].

causes ( EVTz, EVTx, (0,300) );
defers ( interval(MovieM), EVTx );

t EVTX will
! occur
1 EVTxcannotoccu ! [ defers
|- Movie M ] 1 [Z3 causes
i ] T -t
Start of EVTz EVTz+300
MovieM

Figure 8: Dynamic Conflict.

The second statement specifies that while Movie M is playing, event x cannot occur. Whenever a
causes and defers interval overlap, there will be a conflict. In this example, if event x were to occur
after the movie, then no conflict would occur. If it occurred during the movie, then conflict resolution
is required — such as, not allowing event x to occur at all; or, causing event x to occur once the interval
associated with the movie has ended. Dynamic conflict resolution is specified using behaviors. The
first resolution is the default — if an event is deferred, and another statement attempts to cause it to
occur, nothing will happen (completely inhibited). In the second resolution, we simply add a termination
behavior, postCause() that will cause event x if it would have occurred during the deferred interval. So,
the modified defers statement is below:

defers ( interval(MovieM), EVTx, postCause() );

4 LOGIC IN DAMSEL.

Within event-driven systems what actually occurs at run-time generally cannot be pre-determined.
For this reason, it is necessary to be able to constrain and conditionally test the state of the system.
Therefore, we have chosen to support the specification of constraints and conditionals within DAMSEL.
Since temporal and causal relationships are intrinsic to the temporal model, we have borrowed ideas
from temporal and causal logic enabling us to study implementation mechanisms.

In addition, since the design of DAMSEL emphasizes an open systems approach, there will be com-
ponents that will exist outside of DAMSEL’s control yet interact with it. This will include external
processes used in the dataflow component, and graphical interfaces used in the presentation component.
The languages and designs used by these systems may vary widely, causing a language barrier. Also, the
constraints and conditions applicable to the myriad of systems which may interact with DAMSEL would
be too difficult to foresee. Therefore, to support conditional and constraint specifications involving an



open system architecture, we have defined an extensible mechanism that can be used to support con-
straint enforcement and conditional logic based upon the state of the external processes. We will describe
the intrinsic conditional and constraint support first, followed by the extensible extrinsic support (see
Figure 9).

Extrinsic

Media Dataflow Presentatio Event
Descriptor:

3 . Intrinsic
Temporal Relatior Causal Relatior Event
Descriptors

EVENTS

Figure 9: Intrinsic and extrinsic conditionals and constraints support.

4.1 Intrinsic conditional and constraint logic support.

Conditional temporal logic can be used, for example, to determine the current state of the system,
and to test the order in which things occurred. As an example, we may be interested in determining
if event x occurred before event y, which may be expressed as: (EVTx < EVTy). Or, we may want to
determine if event x occurred during? interval A. DAMSEL supports before?, after?, and concurrent?
operators for events, and the same set plus during? and overlaps? for conditionals involving intervals.
Each allows a range variable to be specified, such as event x is before? (<?) event y by at least 60
seconds:

(EVTx <? EVTy , < 60 )

In addition, the condition can indicate specific occurrences of an event: any occurrence, the Nth
occurrence, or the first N occurrences. However, currently we have not designed any history-tracking
mechanisms (i.e., event traces), so conditionals which refer to specific occurrences are only valid while
those occurrences are current. (Thus, if EVTy and EVTx have both occurred for the tenth time, we
cannot now test if the third occurrence of EVTYy followed the fifth occurrence of EVTx, since no history
is kept.)

More complex conditionals may be defined using the conjunctions, “&” (and), and “|” (or). Using the
operators above, one will be able to specify conditions representing all of Allen’s 13 interval relations'©,
in addition to relations between intervals and events, and between events. We can use these conditionals
in triggering events within a causes statement. Conditions may also be used within defers statements to

defer events while the condition is true.

The definition and support of a causal logic is more involved. The general notion of a causal logic
for this domain will allow us to be able to conditionally test the direct cause of an event using caused?
and causedBy?. As such, we can define a condition such as, “EVTx — EVTy.” This condition would be
true when event x caused event y to occur.

Finally, we may also want to constrain the system by defining temporal and causal constraints. The
system scheduler will use them at run-time to ensure that the constraints are met. Examples of a few
temporal constraints include: “event x cannot occur after event y,” and “event x cannot occur before
interval A.” Currently, the temporal constraint operators we have defined include before and after, with
additional parameters as defined above. Using them, we could restrict events to occur before or after the
occurrence of another event. The causal constraint logic includes cannotCause and cannotBeCausedBy.
Although the logics are not complete, we are more interested in the general notion and mechanisms by
which such conditionals and constraints can be managed by the system.



4.2 Extrinsic conditional and constraint support.

Since external processes are outside of DAMSEL, we have adopted a reactive systems approach to
support conditionals and constraints. In these processes, events will occur before DAMSEL can know
about them, so they cannot be constrained from occurring. Instead, updating events will be sent to
the run-time event manager after they occur, allowing it to react as defined in it’s specifications. In
addition, conditionals cannot be formulated which refer to the state of external processes, since their
variables are not local to DAMSEL. To enable this, any updates to the state of external processes can
be sent as events to the run-time event manager. Specifications can refer to the values contained in the
event objects within conditionals.

Firstly, to define reactive constraints — those which are executed after a constraint has been violated
— we define specialized event classes within DAMSEL (the base class hierarchy of events includes two
classes, “affectable_events” and “unaffectable_events”, to which subclasses may be added). Within these
new classes, we define the attribute descriptors that will be needed for constraint violation detection, and
conditional formulation. For example, if we want to constrain window movement within our application,
we would use the window event class — one of the basic extension classes we are defining. The definition of
this class includes attribute descriptors relevant to a window, such as window location, size, and visibility.
When window “A” is moved within the user interface layout, that process will send a window(A) event to
the run-time event manager. The constraints for this event will be checked with the associated instance
within the specialized class for window “A”; and, if a violation has occurred, the system will react. It
may move the window back (a compensating event), or perhaps advise the user of the violation and ask
him /her if the constraint should be overridden. The resulting behavior will depend upon the constraint
methods specified.

Conditionals may be formulated using attributes from these specialized classes. The attributes can
be updated at any time by having the external process send an update event.

5 A FEW EXAMPLES.

DAMSEL has few predicates, and by simply using defaults (e.g. behavior, timing) it is easy to define
very expressive specifications. It is also possible to define very complex specifications, with the ability to
hide much of the complexity. By encapsulating the complexity within new behaviors, this complexity is
hidden from the user as is simply viewed as one more extension. In this section, we illustrate some basic
DAMSEL specifications.

To simply specify that a media object (training video) should be played, only one statement is re-
quired:

causes ( someTriggeringEvent, event(TrainingVideol.start()) )

This will start the video once someTriggeringFEvent has occurred. To embed this within C++ code,
so that it can be executed within sequentially executed code, simply remove the triggering event, and use
the embedded causes syntax, by preceding it with an underscore (the video starts once the statement
is executed):

_causes ( , event(TrainingVideol.start()) )
If the media object is not connected to a datastream (using predicates from the dataflow component),
it will be presented using a default (or pre-defined) application for that media type (or media object) on

the local host machine.

Next, we described a bit more involved example that defines a slide/audio presentation. One initial
event, beginShow, activates the presentation which displays slide; and plays audio;. After audio; has



ended, we want to leave up the slide for the user to review, or while some discussion ensues. After our
selected time limit of about one minute, we want to continue so that the presentation doesn’t run long.
This requires us to end the current slide, and start the next slide and audio. One restriction is that the
slide cannot be ended at least until the audio has finished (the user might try to end the slide through
the user interface). However, once the audio has finished, the user can move on to the next slide at any
point — it will occur automatically after 60 seconds. An illustration of this scenario is in figure 10, and
the specification required follows.

user-invoked : user-invoked
slide(i).end ever > : slide(i).end ever
(deferred’ v v
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Figure 10: Temporal Specification Example: A slide show.

0. causes ( beginShow, (slidel.start, audiol.start) );

1. causes ( audio;.end, slide;.end, (60,62) );
defers ( audio;, slide;.end );
3. causes ( slide;.end, (slide;t1.start, audio;1.start) );

N

Statement 0 activates the presentation; statement 1 will cause the end of the slide 60-62 seconds
after the audio ends (after the audio;.end event occurs). Statement 2 inhibits a slide;.end event from
occurring while the audio is playing; and, the last statement activates the next slide and audio.

For every additional slide, statements 1-3 will have to be repeated. However, it would be straight-
forward to create a method to handle a slide presentation like the one above — acting as a macro — and,
could look something like this (where “slide” and “audio” are the name prefixes for the 10 media objects
to be presented):

causes ( beginShow, event(slidePresentation( “slide”, “audio”,10)) );

The next example describes an interactive examination, illustrated in figure 11. In this short example,
a video is played and then the user is tested based upon its content. The video has accompanying audio
tracks, both in german and english. The test is accomplished using slides which the user must answer.
Wrong answers cause a related segment of the video to be re-played, so the user can see where the correct
answer could have been found. After the user has seen the review (in slow-motion, with a magnified
view of the area of interest), the next test slide is presented. Correct answers simply cause the next test
slide to be presented. For some variety we have added background music, which will play until the video
and test have completed. The following text describes the statements required (we have chosen one of
several possible ways to implement this example). This example uses language constructs from all three
components?® of DAMSEL to provide an overall example.

The following three statements are used to play the video, audio, and music. tv1 is the name of the
test video; eng-tvl and ger-tvl are the names of the english and german soundtracks; and, music-tvl
is the name of the music soundtrack. In the first statement, a starting event startTest, causes the test
video and audio to begin. synch, the execution behavior used, specifies that these objects should be
played using “Audio-Video” quality fine-grain synchronization. The second statement starts the music.
Since we don’t know how long the music is we simply defer the end event of the music until at least
until an exitFEvent is generated, signalling the end of the test. For additional variety, we have defined
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Figure 11: A video testing example.

an activation behavior that randomly selects the tempo and octave for the digital music, each time it
begins. A termination behavior, repeat(), simply repeats the music as long as the end event is deferred.

causes ( startTest, ( tvl.start, eng-tvl.start, ger-tvl.start), ,synch(“Audio-Video”))
causes ( startTest, music-tvl.start )
defers ( tvl, music-tvl.end, 0, ( randomizeMusic(tempo, octave), repeat() ) )

The following set of statements are used to control the test itself. The first statement on the left
causes the first test slide, t¢slidel, to be presented; the following statement sets the video rate to 0.3 of
its normal rate so if it is played again, it will be played in slow-motion.

The set of four statements on the right are used for each slide to handle correct answers and wrongs
answers. If a correct answer is given (the application validates and generates either a tslide;_correct or
tslide; —wrong event), then the first statement ends the slide, and the following statement starts the next
slide. If the answer was wrong, the user is shown a re-play of the video, accompanied with a magnified
view of the area of interest in the video. Each re-played segment of the video is marked with two bounding
events, replay;.start and replay;.end. (As part of the execution of the replay;.start event, it assigns the
correct area to be magnified within the zoom stream object described later.)

causes ( tvl.end, tslidel.start ) causes ( tslide;_correct, tslide;.end )

causes ( tslidel.start, event ( tvl.rate(0.30) ) ) causes ( tslide;.end, tslide;1q.start )
causes ( tslide;_wrong, replay;.start )
causes ( replay;.end, tslide;.end )

The next set of statements defines the dataflow for this example. First, the stream objects are
defined (on the left); then, the dataflow connections are made (on the right). This dataflow is illustrated
in figure 12. We have not connected the music to the server (again, just for variety), so it will play on
the local host machine.

videoZoom = new ( videoMagnifier ); vt1l — splitter();
splitter = new ( videoSplitter ); splitter(0) — videoZoom(0);
server = new ( presentationServer ); videoZoom(0) — server(0);

splitter(1) — server(1);
eng-tvl — server(2);
ger-tvl — server(3);

Finally, the outlets and adapters are defined. We have created both german and english adapters,
indicating which streams should be connected to each. The adapter, videoTest, may connect to either
outlet, and do so at run-time using either of the last two statements.

createOutlet ( “ENGLISH”, mpeg:0, mpeg:1, audio:2 );

createOutlet ( “GERMAN”, mpeg:0, mpeg:1, audio:3 );
createAdapter ( “videoTest”, mpeg:video, mpeg:video, audio:audio );
connect ( “videoTest”, “ENGLISH” );

connect ( “videoTest”, “GERMAN” );
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Figure 12: Dataflow for the video testing example.

This basic example illustrated the use of all the components of DAMSEL. The example could be
extended in many ways, including embedding parts of it within C++ code and executing statements on
the fly. Some people may be more comfortable using the specification language and adding extensions,
while others may prefer to use it within C++. Finally, at the user level, we expect that easy-to-use
graphical interfaces should be used; although for simple specifications it probably isn’t necessary.

6 COMPARISON TO RELATED WORK.

As we said in the first section, the richness (and expressiveness) of a language or approach is directly
associated with the set of objects and types of relations that can be expressed. This section briefly
describes efforts in the area of temporal models and compares them to DAMSEL. A comparison covering
all three components can be found here” 28,

In section 3, we described the four current timing approaches. Here we will first provide an overview
of several projects, and then compare them to DAMSEL.

6.1 Current models.

Timeline models. Timeline models provide very straightforward capabilities to define specifications,
and in general, use very intuitive graphical interfaces for a presentation’s specification. These approaches
probably evolved from an applied, rather than theoretical basis. The simplicity of the model generally
discounts the need for validation of specifications. All timeline models are restricted by the number of
temporal relations that may be defined (to the 13 interval relations defined by Allen'®).

Drapeau and Greenfield'? defined a specification language called MAEstro using a timeline approach.
This work includes a timeline editor in which media intervals are placed on the timeline, indicating the
start and stopping times. The language is purely graphical in which only static specifications can be
defined. This model does not support fine-grain synchronization.

Hierarchical models. Hierarchical models have a more theoretical/mathematical foundation, and
their specifications are also relatively straightforward since generally only two operators are available —
this approach can easily be implemented within a programming language. The model also is restricted
in the number of temporal relations that may be specified since it only supports interval (object-level)
specification.

T.D.C. Little!* has extended the basic model by adding delays when using the parallel operator which
allows a few additional temporal relations to be specified. He has discussed storage of the specifications
using database relation tables, and includes a discussion on support for playing multimedia in reverse.



This model does not support fine-grain synchronization.

Notably, Gibbs, Breiteneder and Tsichritzis 2! have defined an object-oriented framework to imple-
ment a hierarchic approach supporting temporal specifications ( “temporal composition”). A specification
is defined using object instantiations and method invocations. Although they have mentioned the use
of events, implementation details were not discussed. Their specifications are also static; although the
conditional execution of code within the programming language used should enable selective specification
execution. This model does support variable levels of fine-grain synchronization.

Hamakawa, et. al.'® have defined a graphical notation using a concept borrowed from LateX to
define a ‘temporal’ glue in their implementation of a hierarchical model. To define hierarchies, composite
multimedia objects are constructed. The composite objects are then scheduled using a relative timeline.
The glue provides additional flexibility when deriving a temporal layout of the specification. This model
does not support fine-grain synchronization.

Wijesekera, D.K.Hosekote, and Srivastava'® also have introduced a hierarchical model. The model
implements delays by inserting null intervals of some duration. This model, in addition, has extensively
focused on fine-grain synchronization between master and slave channels.

Schloss and Wynblatt* describe a multi-layered multimedia data model, and a temporal event calcu-
lus. The key temporal operators include concatenate, and overlay (serial and parallel), while fine-grain
synchronization is supported using synchronization points. Specifications are stored within temporal
structures in the data model.

Synchronization point models. The synchronization point approach evolved out of synchronization
techniques of operating systems and parallel programming languages further extended by specific re-
quirements for handling multimedia data?. One advantage of this model over the previous ones is that
it naturally supports both coarse and fine-grain synchronization using the same synchronization point
paradigm.

Steinmetz? introduced the synchronization point model. This model (based upon endpoint specifica-
tions) made possible several additional relationships that could not be defined using the above (interval-
based) models. His approach defined a complex statement to extend programming languages to support
synchronization point specifications (similar to a complex SQL SELECT statement). In addition, he
introduced the concept of alternate activities, which are individually-specified actions to be executed
once a multimedia stream reaches it’s synchronization point, and while it is waiting for other designated
streams to reach that point. He also was the first to address range delays, and alternate activities when
exceptions occurred.

Blakowski, Huebel and Langrehr® extended Steinmetz’s model by adding support for unpredictable
durations, timers (to support time delays and timeline type specifications), and interactive objects which
are user-driven events. In addition, he discussed possible extensions to his model, including: waiting
actions, acceleration actions, skipping actions and alternate presentations to handle resource constraints.

Schnepf, Konstan, and Du?* defined a presentation approach using synchronization points at the im-
plementation level and events within a two-predicate specification language (they also define an extended
timeline-based graphical interface). Their work supports alternate activities and fine-grain synchroniza-
tion, implemented basically in the same way as Steinmetz above. In addition, they described support
for maintaining synchronization when skipping forward and backward through a specification; and, they
also considered spatial issues, such as window dependencies and window overlapping conflicts in four
dimensions. They have also defined additional synchronization point semantics using “barriers” that can
be applied to media objects.

Event-based causality models. This most recent approach has been chosen by several research
projects, and has proven thus far to be capable of providing the most flexible synchronization primitives



of any approach.

The work of Horn and Stefani'®, and Blair, et. al.!, are similar in that they both evolved out of
work on Esterel, a real-time synchronous specification language project. The language includes the
two operators, parallel and serial, but the number of the temporal relations that can be specified is
achieved using synchronization based upon sending and waiting for signals (or events). These signals
could conceivably be sent because of user interaction, or system and application-level events.

There are a few differences between these projects. The first project (Horn, et. al.) supported time
as a valid event, and minimum time point-based delays. The second project defined execution relative
time to support a timeline model, range delays, and system-level support for fine-grain synchronization.

Vazirgiannis and Mourlas® have defined a script-based approach which supports parallel- first, parallel-
last, sequential and repetition operators, and events. It has been implemented using an object- oriented
model and supports the composition of multimedia data (composite objects). The authors have focused
on temporal and spatial specifications in an attempt to remain platform independent (believing that
“configurational” or modification specifications will be platform dependent). In addition, they have de-
fined n-ary and unary actions to be executed when objects are synchronized. Unary actions, applied to
individual objects, include operations such as playing, suspending, cropping or scaling; while n-ary ac-
tions, applied to a group of objects, might include overlapping, grouping and fine-grain synchronization.
Finally, a specification can also include exception handling and interrupt handling routines.

Buchanan and Zellweger?® defined an event-based specification language. Their work included sup-
port for range delays with minimum, maximum and optimal values as well as cost measures for stretching
or shrinking the execution duration of a media object being played out. In addition, the Firefly project
included validation mechanisms to check a specification both at compile-time and at run-time for incon-
sistencies. No support for fine-grain synchronization is described. They support event deactivation by
allowing some types of events to be turned on or off. In addition, they support object behaviors (but
not specification behaviors). The language of their model was not introduced, however a useful graphical
notation to support limited event-based specifications was. Their approach is restricted to to temporal
specifications.

Fujikawa, et. al.'” have defined a hypermedia-based approach which supports temporal synchro-
nization using events, and parallel and serial operators using timepoint delays. They have also allowed
synchronization to be tied to the “first to finish”, or “last to finish” when a group of objects is specified.
The work does not address fine-grain synchronization.

6.2 Model comparisons.

Of the approaches above, the models supporting the timeline approach cannot handle unpredictable
durations, and their specifications are static. All of the hierarchic models should be able to support
delayed starts, and unpredictable durations. However, this approach is restricted in the types of temporal
relations that can be defined, as discussed by Blakowski®.

End point specification models, which include both synchronization point and event-driven ap-
proaches, are more powerful than the previous two approaches because (at a minimum) they can define
more temporal relations. The synchronization point approach allows media objects to be temporally
“tied” together by defining synchronization points anywhere within the media objects; thus, they can
handle media objects of unpredictable duration. Two of them%?2* allow user-interaction events to be used
as synchronization points, while none support user- or application-defined events (such as “x==6"). All
three support positive delayed starts ( Blakowski® and Schnepf, et. al.24 support single-valued delays,
while Steinmetz? allows range delays); waiting actions (describes what to do while waiting for other media
objects to reach a synchronization point); and, fine-grain synchronization using extensional relations.

Event-driven approaches are more powerful than synchronization point models since they can also
define temporal relations between media objects and other types of events, including system, user, and



application events. This enables the occurrence of these events to affect the behavior of the execution.
Horn and Stefani'®, and Blair!, use the programming language Esterel, which provides the strengths
of a high level language; while on the downside, requires users and programmers to learn an entire
language. Unlike most implementations, DAMSEL uses a declarative language design, which is easier
to read, write and validate than specifications written using a procedural language??. In comparison to
DAMSEL, none of models discussed support a general form of deferment, behavioral specifications, or
temporal and causal logics.

In addition, run-time resource management is a factor in any multi-user environment, and few im-
plementations have addressed this. Using one approach, if the resources specified were not available,
the specification would not play?'. Another approach described support for alternate presentations if
some set of resources were low or not available®. In DAMSEL, the use of resource-related behaviors and
conditional specifications are two ways to provide resource-sensitive execution.

DAMSEL is the first project to date that has focused on the definition and integration of components
to support dynamic specifications for the timing, presentation, and modification/analysis of multime-
dia data. In addition, it introduces support for deferment, and conditional and constraint logics, and
extensible behaviors.

7 SUMMARY

Within this paper we have presented an overview of the temporal language component of DAMSEL,
a dynamic multimedia specification language embedded in C++4. Specifications in DAMSEL are dy-
namic, since they are event-driven. This means that system, application, and user-media events can
be used within the specifications enabling very dynamic and interactive applications to be defined. We
have also introduced several new concepts and ideas to make the language more powerful and useful:
deferment, negative range delays, behavioral extensions, temporal and causal relations, and conditional
and constraint logics. In addition, the language is simple, expressive, and extensible. DAMSEL supports
an integrated approach, the separation of specification from implementation, and it’s embedable so that
one may take advantage of the power of a high-level programming language.

We are also working on complex event detection — particularly, sequence-based event detection, which
is not currently addressed by any multimedia language projects known to us. This entails the definition of
a language to describe the sequences to be detected, and supporting mechanisms. Other interesting areas
may include the development of history-tracking mechanisms to support playback, playing in reverse,
and skipping. Since the behavior of the system is event-driven, these issues are not as straightforward as
in other models. In addition, security in multimedia has not been addressed with regard to specifications.
It should be possible to define authorizations on media objects and events to restrict access, and therefore
restrict the behavior of the system based also upon access privileges. If useful, it would also be possible
to define activation levels, such that an event would have to be excited (triggered) ¢ number of times
before it actually fired.

Eventually, advanced multimedia languages and applications may support open systems architectures,
as exemplified by the ISO/IEC PREMO standard in progress®, and demonstrated to an extent by the
MAEstro project'?. We are designing DAMSEL with this in mind.

It is our hope that the ideas introduced and demonstrated in DAMSEL will be incorporated within
next-generation systems, thereby providing more sophisticated capabilities than currently possible. Next-
generation applications, such as scientific analysis and simulation, and interactive multimedia will require
more powerful multimedia languages and applications than are currently available today.

The DAMSEL language is being implemented in a UNIX environment in the Distributed Multimedia
Center, Computer Science Department, University of Minnesota.
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