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Abstract

Visual data mining is the use of visualization techniques to allow data miners and
analysts to evaluate, monitor, and guide the inputs, products and process of data mining.
It can help introduce user insights, preferences, and biases in the earlier stages of the
data mining life-cycle to reduce its overall computation complexity and reduce the set of
uninteresting patterns in the product. Even more useful may be the new insights developed
by the data miners and analysts concerning the quality and implications of the decisions
made by the data mining process. These new insights may facilitate the development of
better algorithms and processes for data mining. This paper provides a framework for
visual data mining via the loose-coupling of databases and visualization systems. The
paper applies visual data mining towards designing new algorithms that can learn decision
trees by manually refining some of the decisions made well-known algorithms such as C'4.5.
Experiments with a set of benchmark data sets from the literature show that a new algorithm
consistently outperforms the well-known algorithms. The paper concludes with a discussion
of the implications of visual data mining for the data mining, databases, and visualization

systems.
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1 Introduction

Data mining [SAD"93] is the efficient and possibly unsupervised discovery of interesting,
useful and previously unknown patterns in a data warehouse, which is a historical database
designed to facilitate analysis and knowledge discovery. Common patterns of interest include
classification [Qui86], associations [AS94, HS95], clustering [Fis95], and sequential patterns
[MTV95]. The process is often very slow, particularly when databases are large. The success
of the data mining process is critically dependent upon the availability of user insights and
biases[Mit77], even though the process may use unsupervised learning algorithms [Lan96).
User insights and biases includes abstract preferences for attributes and attribute sets that
reflect the user’s interests and purposes. It could also include more detailed guidance in
terms of preferences on the partial patterns being selected for further growth and exploration
during the mining process.

In this paper, we propose Visual Data Mining as a mechanism to enable users to monitor
the data mining process, inputs, and products, as well as to interact with the data mining
process and possibly influence the decisions being made. Visual Data Mining is useful for
several reasons. First, early user feedback about level of interest, usefulness, and domain
knowledge can filter out uninteresting patterns early in the process and help focus computing
resources on more interesting patterns. Second, user feedback can improve the selection of
appropriate learning algorithms based on the application domain. Third, visual inspection
of datasets can provide direct clues towards interesting patterns in the data [KKS94]. Most
importantly, visualization of the data mining process can provide new insights and may

result in the design of better algorithms for all aspects of data mining.

1.1 Data Mining Life Cycle

We view the life cycle of the data mining operation as a three stage process of preparing
the data for mining, deriving the model, and using the knowledge obtained from the data,
as shown in Figure 1.

The data preparation stage deals with improving the data quality and summarizing the
data to facilitate the analysis and discovery process. Data mining can be done on either
operational databases or on a data warehouse [IH94], which is usually a summary database
of the various businesses of an enterprise. The quality of the data in the data warehouse is
constantly monitored by data analysts. Due to the heterogeneity and non-standard policies
enforced on data quality at the different source databases, the warehouse data is usually
cleaned or standardized via data scrubbing [Inm92, TH94].

The model derivation stage focuses on choosing learning samples, testing samples and

learning algorithms. Due to the large volume of available data, data mining may be done
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Figure 1: Information flow in the data mining life cycle

on subsets of the data from the data warehouse. An appropriate data sample is selected
from the data in the warehouse and is checked for representativeness. This process may
have to iterate a few times before a suitable sample set can be selected. The selected sample
dataset forms the training data for the data-mining algorithm. The data-mining process
is viewed in our framework as the derivation of an appropriate knowledge model of the
patterns in the data that are interesting to the user. The algorithm for model derivation,
together with the guidance provided by the user, will generally produce several models of
the information contained in the data. The data-mining algorithms use guidance from the
analyst to decide various parameters of the model being learned from the data, such as
its accuracy and prevalence, and to control the computational complexity of the learning
process.

Among all the models generated, the users may only select a few interesting models
to be included in their applications. The usage and maintenance phase is concerned with
monitoring of database updates and continued validation of patterns learned in the past.
Even though the learning process may have used guidance, not all the knowledge models
generated will have business applications. Only the interesting models are selected and
applied performing business tasks. Another important task in this stage of the life cycle
is to continuously monitor the validity of the knowledge models in the context of changes
to data in the warehouse. When the population in the warehouse shifts significantly, the
previously learned models will no longer be applicable, and new models will have to be

derived. We may also be able to learn new models incrementally from the new data.



1.2 Scope and Outline

Visual Data Mining (VDM) refers to the use of visualization techniques to evaluate, monitor
and guide the data mining process and its inputs and products, as needed. Evaluation
includes the validation of training samples, test-samples, and learned models against the
data in the database plus the appropriateness of data and learning algorithms for specific
data-mining situations. Monitoring includes activities such as tracking the progress of
the data-mining algorithms, evaluating the continued relevance of learned patterns in the
context of database updates, etc. Guidance includes activities such as user-initiated biasing
or altering inputs, learned patterns and other system decisions.

We find the prospect of improving the data-mining algorithms through the new insights
developed about the mining process, to be the most exciting promise of visual data mining.
This paper proposes a loose-coupling of existing conceptual data models and visual interfaces
as a tool for supporting visual data mining. It illustrates the tool in the context of the
problem of learning decision trees for classification problems, e.g., visualizing the progress
of ID3-like [Qui86] algorithms. It presents and evaluates two new algorithms designed
interactively via the tool.

The rest of the paper is organized as follows. In section 2 we provide brief surveys of
visualization and data mining and summarize our contributions. In section 3 we propose a
language which integrates query-language features and visual interface controls. We provide
some examples to show the application of this extended visual query language to various
data-mining algorithms. Section 4 shows the step-by-step processes involved in developing
algorithms for data mining using visualization, and we develop new algorithms for inducing
decision trees from examples. A performance evaluation of the algorithms developed in

section 4 is done in section 5. Section 6 presents our conclusions and future work.

2 Related Work and Our Contributions

The goal of visual data mining is to provide a synthesis of visualization and data mining,
to enhance the effectiveness of the latter using the techniques from the former. Since this
synthesis is rather new, there is very little work which covers both aspects and is thus
directly relevant. Since visual data mining draws upon techniques from both data mining
and visualization, we believe there is a need to refer to work in these areas. However, since
both are established fields in themselves, we provide only a brief reference to the techniques
in them, and point to comprehensive surveys in these areas. To do more than this, we
believe, is outside the scope of the present paper. In the following, we first briefly survey
techniques in data mining and visualization and then evaluate the potential of visualization

techniques for enhancing the effectiveness of data mining.



2.1 Data Mining: A Brief Survey

Data mining is an active research area with the promise of high payoffs in many business and
scientific domains [FPSM91, MCPS93, AIS93, AP95]. Industry, government, and scientific
communities are being inundated with huge volumes of data that is routinely stored in on-
line databases. Analyzing this data and extracting meaningful patterns from it is almost
impossible without computer assistance to the human analyst. Much of the data-mining
research to date has focused on approaches to applying traditional machine learning and
discovery methods to data stored in relational databases [FPSM91]. Recent years have seen
more of a “systems” approach to the process [MCPS93, AP95, HS95], where knowledge
discovery and machine-learning techniques are components of an entire data mining system.

Knowledge extracted during the mining process can be of various kinds, depending on
the nature of the knowledge, its complexity, its uses, etc. Examples include classification
rules, association rules, temporal sequences, causal graphs, etc. [AIS93]. In addition, this
categorization helps in developing efficient algorithms for the specific categories of knowl-
edge. The focus of traditional machine-learning research [Car90] was on the accuracy of
the learned knowledge. Given the huge volume of data in databases and the computational
complexity of the learning process, the scope of the research program has been expanded
to address efficiency in addition to accuracy. In recent years substantial advances have
been made in developing data-mining techniques that provide high efficiency in addition to
improved accuracy.

Since a detailed survey of data mining research is beyond the scope of the present paper,
we point readers to the following references [MCPS93, AIS93, AP95]. From the perspective
of visual data mining, any of these data-mining techniques can be used as the engine in the

“model derivation algorithm” component of our system.

2.2 Visualization Techniques: A Brief Survey

Visualization has been an active research area for some time now, and it has shown its power
in helping us better understand scientific phenomena [REET94, Kau94a). Any visualization
system focuses on the following four issues: (i) the conceptual model of visualization data,
(ii) the control interface, (iii) the control methods, and (iv) the visualization representation.
A detailed survey of these is beyond the scope of this paper and can be found in [NS90,
REE*94, com94]. In the following, we provide a brief overview of each of these.
Conceptual Data Model: Almost all work in visualization has used some variation
of a model where (point) datum is represented as a vector with values for each compo-
nent/dimension. Given the roots of visualization in graphics, this is very natural. While
often adequate for representing information about physical phenomena such as convective

and laminar flows, vortex formation, etc., this approach may not be appropriate for repre-



senting the complex relationships found in business data[Mac86].

The VisDB [KK94] system demonstrates one example of conceptual data modeling of
complex business data. The VisDB system uses each pixel of the screen to visualize the data
items resulting from a query on whole data. The resulting data items are sorted according
to their relevance to the query. The VisDB system maps the relevance factors to colors and
places the perfectly matched items in the middle of the screen with the less relevant ones
creating a rectangular spiral according to their relevance factors. The system also generates
a separate window for each selection predicate of the query. The pixel position for each
data item is the same in all the windows. The location of each data object represents a
unique object identity. The users can perceive data characteristics such as multidimensional
clusters or correlations by studying corresponding regions in the different windows.

Control Interface: Control of most visualization systems is provided as a “point-and-
click” interface, typically handled by a mouse. A new interface like one using DataGlove
has been also proposed [BF94]. The ease of use of PCs over Unix machines has shown the
clear superiority of the desktop paradigm over a textually oriented command line paradigm.

Control Methods: Control methods refer to the various techniques that are available
to an analyst to control navigation through the data. Specific examples include querying,
dimension reduction, aggregation, setting of orientation/perspective/hierarchy, animation,
and slider control. Current visualization systems provide some of these. Subspace methods
find significant features and subspaces of high-dimensional data sets that can be visual-
ized [Gro94]. Cluster-analysis techniques are used to find an optimal representation of the
density distribution of the multidimensional data sets. The problem of finding a low di-
mensional representation of these clusters that preserves their most important features is
solved by an analysis of the principal components. We believe there is a need to go sub-
stantially beyond this and include the other control methods mentioned above to visualize
the complex nature of relationships extracted from business data.

Visualization Representations: Volume visualization is a method of extracting in-
formation from volumetric datasets and is concerned with the representation, manipulation
and rendering of these datasets [Kau94b]. The volumetric dataset is usually represented as
a 3D discrete regular grid of volume elements called vozels. Each voxel has values associ-
ated with it which represent properties of the object residing in the voxel. Volume graphics
[Kau94b] provides a mechanism for synthesis, manipulation and rendering of volumetric
objects stored in a volume buffer of voxels. Volume graphics has several advantages over
conventional surface graphics. These are viewpoint independence, insensitivity to object
and scene complexity, support for block operations and the capability of representing the
inner structure of objects [Kau94b]. The major disadvantage of volume graphics based on

the voxel model is that the method is approximate and requires a very large amount of



memory. However, octree representations, filtering schemes and transformation schemes
have been proposed to reduce the memory requirement of the voxel model by compressing
the information [Kau94b).

AutoVisual [BF94] designs visualizations for the n-Vision visualization system that use
worlds within worlds, an interactive method of representing multivariate relations with a
hierarchy of nested heterogeneous coordinate systems (worlds). Each world may contain
a graph encoding a subset of the relation encoded by its parent world. The subset is
determined by the position of the world’s origin relative to its parent. The user can grab each
world using a DataGlove and move it throughout the space defined by its parent, thereby
interactively exploring the data space. Glyphmaker is a tool for data visualization/analysis
[RAEM94] that allows users to build customized representations of multivariate data easily
and also provides interactive tools to explore the patterns in and relations between the
data. Glyphs, which are graphical objects whose elements (e.g. position, size, shape, color,
orientation, transparency, etc.) are bound to data, are used to visualize complex data.
Glyphmaker provides different kinds of glyphs like lines, spheres, cuboids, cylinders and
arrows. It also provides an interface to bind data variables to the several elements of the
glyphs. This binding makes data characteristics be displayed through the visual aspects of
glyphs.

Visualization Needs of Data Mining have been explored by few researchers. IMACS
[BST+94] uses conventional graphs and plots as an interface for the analyst to segment data
with mouse clicks. The data segements appear as breaks in a graph to indicate segment
boundaries. MVV [MTS91] uses bar charts and slider bars to locate clusters in multidi-
mensional space, allowing the display of multiple views of a given dataset. The nested
histograms and the group bars in WinViz [LHLQ95] and Netmap [Dav93] are line-based vi-
sualization tools that use a circle as the basic graphical device. Its circumference is divided
into several groups, one for each attribute of interest. Individuals are represented by nodes
within the group. Lines drawn across circles indicate relationships between subgroups or
individuals linking their nodes. Netmap uses clustering algorithms to group individuals and
fuzzy matching techniques to identify near matches.

Of the various components of visualization, we believe that the control interface and
visualization representations are in the most mature form for use by data mining. Thus,
unless a specific shortcoming is identified, we believe there is no need to go beyond what
is provided by visualization systems today. For the other two, namely data model and
control methods, we believe more work needs to be done. Earlier we described possible
enhancements to control methods. We now describe possible enhancements to the data
model.

First, we believe that the vector-type data models are too low level to appropriately



capture the rich semantics found in most business data. We believe there is a need to
use semantically rich data models, e.g. the entity relationship model [EN94], to model
the concepts. Some initial efforts in this direction include [ABN92, KKS94, LHLQ95].
Next, we need the ability to visualize database concepts like schemas, queries, indices, etc.
in addition to the data. This will enhance the understanding of an analyst about the

underlying database, thus aiding in the mining process.

2.3 Owur Contributions

The first contribution made by this paper is in developing an approach where techniques
from data mining and visualization are synthesized to provide user input, preference and
bias during earlier phases of data mining. The second contribution made by this paper is
in developing a framework where learning algorithms can be developed and refined in an
incremental manner, with visual feedback from the analyst. This provides a very powerful
method for the analyst to incrementally refine the parameter settings, thus improving the
convergence of the learning process.

The final contribution made by this paper is to develop a new class of learning algorithms
in the proposed framework, which uses feedback from the user at runtime to refine some
of the decisions made by well-known learning algorithms for decision trees. We have de-
signed new algorithms via this mechanism. A new algorithm outperformed the well-known

algorithms for several benchmark datasets.

3 A Visual Query Language Based Control Interface

In this section we present a Visual Query-Language-Based Control Interface (VQLBCI),
as a framework which enables user participation in the data-mining process. Users are
allowed to make queries on and manipulate the visual representations just like data. The
query-language-based framework is described in terms of the entity-relation data model.
We describe how the common tasks in visual data mining can be enabled in this framework,
and we also use the specific example of classification-rule learning to show the utility of the
VDM process.

3.1 Basic Concepts

VQLBCI is a tool to visualize the database objects (e.g. the results of queries) using user-
defined visual representations and to query and manipulate the visual representations of
database objects, via a modern user interface such as the mouse based X window system.
The goal of VQLBCI is to integrate the visual representations with conceptual data models

and query languages in a loosely coupled and extensible manner. The loose coupling is



intended to facilitate the reuse of existing database technology and visualization technol-
ogy in the implementation. Extensibility is desired in such a system to allow the user to
include new diagrams and visual representations, since the visual representation can often
be domain-dependent.

One approach to integration is to specify the visual representations using a conceptual
data model, just like other data in the database. The behavior of these visual representations
in response to the user input, e.g. mouse events, can be modelled as data manipulation
queries over the specification of visual representation. We also assume that the result of a
query is presented to the user in a visual manner by creating new visual representations or
updating existing ones. Several associations between pairs of concepts from the two domains
need to be specified. These include the association between query results and their visual
representations, as well as the association between external events and implied queries on
the visual representations.

This paper uses the Entity-Relationship Diagram (ERD) [EN94], a well-known con-
ceptual data-model, to specify visual representations just like other data in a database.
We hypothesize that the Entity-Relation model can represent a reasonable set of diagrams
needed for visualizing the inputs, products and process of data mining, even if there are
some visual representations that are difficult/impossible to model in this framework. We
take the liberty of allowing procedure-valued composite attributes in ERDs to model the
procedure-valued fields supported by modern databases. The externally specifiable param-
eters of the conversion procedures are represented in the ERD as parts of the composite
attributes.

Use of ERDs to specify visual models allows users to define different visual representa-
tions (e.g. histograms, networks, pie-charts, etc.) in the database schema. A mechanism
is needed to associate these user-defined visual representations and the data stored in or
derived from the database and data warehouse. This mechanism can be modeled as a re-
lationship between visual representations and other data entities within ERD. Given an
association between a query and a visual representation, the results of traditional queries
can be converted to visual representations. Default procedures can be provided to convert a
database object (e.g. a relational table) to a set of system-defined diagrams along the lines
of [Mac86]. The conversion procedures are not natural in traditional ERDs; however, we
will take the liberty of viewing these procedures as composite attributes in ERDs. These
composite attributes are not too far from modern databases, since they support procedure-
valued fields and triggers.

This paper will also use the interaction semantics of common window-system based user
interfaces. As new user interfaces emerge based on newer input devices, e.g. gloves, helmets,

eye-trackers, and body suits, there may be opportunities for improving the design and



assumptions made in this paper. Modern window systems view the display as a hierarchy
of windows. The root window represents the entire display area and has child windows such
as menus, text windows, icons, scroll-bars, buttons, etc. The type of window determines
the response to an event inside it. A button-press event may carry out different actions
in a button window and in a text window. The behavior is often modeled as a collection
of associations between the external events, e.g. mouse-related ones, and event-handler
procedures. Often child windows displaying the result of an event within a parent window
are drawn on top of the parent. The window system seldom tries to optimize the size, shape
or placement of various windows. These aspects of the windows are often manipulated by
the user to improve the layout for the purpose of viewing multiple windows simultaneously.
The system also allows the user to interactively redefine some of the visual aspects of a
composite window via sliders, menus, radio/check buttons etc. Selection of windows and
focus can be made in different ways.

Thus, we assume that the users will start with a hierarchy of windows on their display
space. Queries made within a specific window will have their results displayed in the same
window or in a child of that window. The visual representation of the results may be
determined by the enclosing window as well as the query. For example, queries made
inside a text window may display results using textual tables as are used by traditional
SQL language. Queries made via a query-by-example window may display results using a
spread-sheet interface. Queries could change the default visual representations offered by
the enclosing windows via associations which may already be in the database or be specified
interactively by the user. For example, an aggregate query using a group-by clause may
use a histogram representation. A query fetching only two columns could use a bar chart

or plot representation based on the data-types of the selected fields.

3.2 Components of VQLBCI

There are three major concepts in VQLBCI, namely visual representations, computations
and events, as shown in Figure 2 using the conceptual data model of ERD. Visual represen-
tations consist of a set of primitive visual representations such icons, geometry etc. Each
primitive object has a location with respect to the enclosing visual representation. Visual
representations include user-defined and system-defined diagrams and pictures to visualize
the inputs, products and process of data mining. Different diagrams already proposed in
the literature [GSSW92, LHLQ95, KKS94, KK94, RAEM94] can be thought of as concrete
instances of visual representation for data mining. We believe that newer visual represen-
tations will be forthcoming based on the needs of the application domains and data mining
life-cycles in the future. VQLBCI allows the inclusion of additional user-defined diagrams,

as illustrated later in this section.
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The computations represent various attributes of database queries, windows-system pro-
cedures, and other algorithms. It is not always desirable for the ER model to capture the
executable specifications of all computations. However, several attributes of a computa-
tion including its name, documentation, parameters, and invocation-commands, may be
modeled. Stored procedures in modern databases illustrate the trade-offs inherent in mod-
eling computations in a data model. Events include internal database predicates as well as
external events from the input devices such as the mouse and keyboard.

The key relationships in this framework include associated-with, created-by, updated-by,
and animated-by. The <event, visual-representation-atom> pairs are associated with com-
putations, which are invoked when the event occurs in the context of a primitive visual
representation. The other three relationships are between computations and visual repre-
sentations. Thus the result of a computation such as a database query can be presented by
creating a new diagram, updating an existing diagram, or animating a sequence of diagrams.

Now, we illustrate the modeling of visual representations and primitive visual represen-
tation atoms via a couple of examples. We select simple diagrams associated with decision
trees and association rules. Figure 3 shows an entropy-gain comparison diagram to help
choose among the alternative candidates for extending a frontier node in a decision tree.
Each candidate represents the entropy gain by using an attribute to grow the tree. Bar-chart
visual representation is used to facilitate visual ranking of the candidates in terms of en-
tropy gain, as shown in the upper left corner of Figure 3. The primitive visual representation

atoms are illustrated via an ERD in the figure. The key primitives include data attributes
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with the visual representation of the bars in the bar diagram. The visual attributes (e.g.
bar length) are derived from the entropy gain attributes of the data attributes by using the
geometric properties of the diagram.

Figure 4 illustrates a common matrix diagram used to browse the association rules pro-
duced by the data mining process. This diagram may be used to select the most interesting
rules. As shown in the ERD in figure 4, the primitives include the right-hand-side (RHS)
of the association rule with the visual representation of a row in the matrix. The second
primitive is the left-hand-side (LHS) of the association rule with the visual representation
of a column in the matrix. LHS consists of multiple data attributes, whereas the RHS has
a single attribute. The most important primitive is the association rule, with the visual
representation of a glyph in the matrix entry determined by its LHS and RHS. The color

and size of the glyph may represent the prevalence/support and confidence of the rule.

4 Visual Development of Algorithms

We believe that the most interesting use of visual data mining is the development of new
insights and algorithms. The visualization of data mining often provides new insights about
the quality and implications of the decisions made by the data mining system. Poor deci-

sions made by the data mining systems can be detected and corrected via a visual query—
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language—based control interface.

4.1 General Framework

We have modeled the problem of classification-rule-learning as a search [Kor90] process in
the state space of different models. Figure 5 shows the ER diagram for learning decision
trees. Such a model allows the user to monitor the quality and impact of decisions made
by the learning procedure. The learning procedure can be refined interactively via a visual
interface, e.g. a form shown in Figure 5. These extensions are performed by doing queries
on the current visual representation of the model. Thus the operations provided as part
of the VQLBCI framework allow a user to modify and/or create new procedures for data
mining. A visual data mining framework thus also provides a basis for developing new
algorithms for data mining. Section 4.2 discusses how some of the interesting algorithms
for learning decision trees are developed using this method.

Learning a classification decision tree from a training data set can be regarded as a pro-
cess of searching for the best decision tree that meets user—provided goal constraints. The
problem space of this search process consists of Model Candidates, a Model Candidate Gen-
erator, and Model Constraints. Many existing classification-learning algorithms like C4.5
[Qui93] and CDP [AIS93] fit nicely within this search framework. New learning algorithms

that fit users’ requirements can be developed by defining the components of the problem

12



Design: Decision tree learning algorithm

Traversal Strategy: =) =) |

Depth Breadth Best

Accsptable Error Rete %
Maximal Tree Size: E

acceptable
error rate

overall
error-rate

acceptable

model
candidate

d

[unacceptabie |/

acceptability

criteria

error-rate

search
algorithm

expandability
criteria traversal
strategy

[ teaf | [ non-leaf

expandable non-expandable
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space. We discuss the components of the search problem space in the context of ID3 like
decision—tree-learning.

A Model Candidate corresponds to a partial classification decision tree. Each node of
the decision tree is a Model Atom. A non-leaf model atom has an attribute with % associated
values and has k child model atoms, each corresponding to a value of the attribute. The
arc from a non-leaf model atom to its child model atom is labeled with the corresponding
value of the attribute. Leaf model atoms have an attached label that indicates the majority
class. Each model atom contains a subset of the training data set, such that the values of
the attributes on the path from the root to the model atom are consistent with the data.
An initial model candidate corresponds to a decision tree that has a single leaf model atom
containing all of the training data set. The search process can be defined as a process to find
a final model candidate starting from the initial model candidate, such that the final model
candidate meets user goal specifications. Table 1 shows a training data set with four data
attributes and two classes. Figure 6 shows different model candidates that are constructed
during the search process of finding a final model candidate with the training data set given
in Table 1. Figure 6(a) shows the initial model candidate and Figure 6(c) shows the final
model candidate. The leftmost leaf model atom of the final model candidate labeled “Play”
contains the complete training data set for which the value of Outlook is sunny and the
value of Humidity is less than or equal to 75.

The model candidate generator transforms the current model candidate into a new

13



Outlook ‘ Temp(F) ‘ Humidity (%) ‘ Windy? H Class

sunny 75 70 true Play
sunny 80 90 true Don’t Play
sunny 85 85 false Don’t Play
sunny 72 95 false Don’t Play
sunny 69 70 false Play
overcast 72 90 true Play
overcast 83 78 false Play
overcast 64 65 true Play
overcast 81 75 false Play
rain 71 80 true Don’t Play
rain 65 70 true Don’t Play
rain 75 80 false Play
rain 68 80 false Play
rain 70 96 false Play

Table 1: A small training data set [Qui93]
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model candidate by selecting one model atom to expand from the expandable leaf model
atoms. The model candidate generator first checks to see whether the current model can-
didate satisfies the acceptability constraints. If the current model candidate satisfies the
acceptability constraints, the search process ends and the current model candidate is re-
turned as the final model candidate. Otherwise, the model candidate generator selects an
expandable leaf model atom to expand according to the traversal strategy.

The model candidate generator checks whether the model atom is expandable according
to the expandability constraints. If the model atom is not expandable, the model candidate
generator marks the model atom as non-expandable. Otherwise, the model candidate
generator marks the model atom as non-leaf and then generates child model atoms. The
model candidate generator considers all possible attributes that can be used to generate child
model atoms. Using a data—entropy—calculation function, the model candidate generator
evaluates the entropy gain of the possible child model atoms with different data attributes.
One data attribute that maximizes the entropy gain is chosen for the expansion. One model
atom is created for each possible value of the attribute chosen, and the training data set
is also split accordingly and assigned to each corresponding child model atom. All the
generated model atoms are initialized as leaf and expandable. After the expansion, model
candidate attributes such as the total number of model atoms and overall error rate must
be updated with new model atoms and their attributes.

Model constraints, which are used by the model candidate generator, provide controls
and boundaries to the search space. Model constraints consist of acceptability constraints,
expandability constraints, a traversal strategy and a data—entropy—calculation function.
These constraints are specified based on several attributes of the model candidate and model
atom. Each model candidate has the global attributes of the decision tree, the overall error
rate of the model candidate, the total number of model atoms in the model candidate, and
the total number of expandable leaf model atoms. The overall error rate shows the accuracy
of the model candidate for the classification task. The total number of model atoms shows
the complexity of the classification rules learned in the model candidate. The total number
of expandable leaf model atoms indicates the different possible ways in which the model
candidate can be expanded further.

A model atom has the following attributes: leaf or non—leaf, expandable or non—
expandable, depth of the node in the tree, and a subset of the training data set that
falls into the node of the atom. A model atom also has the derived attributes of the subset,
the size of the subset, the class distribution of the subset by each data attribute, the data
attribute chosen for the model atom expansion (only for non—leaf model atoms), the entropy
gain (only for expandable model atoms), majority class, and local error rate.

An acceptability constraint predicate specifies when a model candidate is accept-
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able and thus allows the search process to stop. The predicate is specified based on the

model candidate attributes. Some examples of the acceptability predicate are:

A1) total number of expandable leaf model atoms = 0 (default)

A2) overall error rate of the model candidate < acceptable error rate

A3) total number of model atoms in the model candidate > maximum allowable tree size
A4) other predicates that are logical combinations of the above predicates

The acceptability predicate Al is used in C'4.5 and CDP. The predicate A2 can be used to
terminate the search process early if the overall error rate is acceptable. The predicate A3
limits the decision tree size with the maximum allowable number of model atoms. Predicate
A2 and A3 prevent the search process from expanding fully and force the search process to
stop as soon as the user’s need is met.

An expandability constraint predicate specifies whether a leaf model atom is ex-
pandable or not. The predicate is specified based on model atom attributes. Some examples

of the expandability predicate are:
E1) local error rate > 0.0 (default)
E2) entropy gain > 0.0 (default)

E3) (%)2 < local error rate, where mazxlength is user provided constant

adj_depth—1
E4) ( mazlength

adj _depth is adjusted depth (see Section 4.2 for details)

)2 < local error rate, where mazlength is a user—provided constant and

E5) other predicates on the combination of model atom attributes

C4.5 uses the expandability predicate E1 and E2. CDP uses the predicate E2 and E3.
The traversal strategy ranks expandable leaf model atoms based on the model atom

attributes. Some of the examples are:

T1) increasing order of depth (Breadth—First)

T2) decreasing order of depth (Depth—First)

T3) orders based on other model atom attributes (Best—First)

C4.5 uses Depth-First strategy and CDP uses Breadth—First strategy.
The data—entropy—calculation function provides a mechanism for calculating the

entropy of training cases with respect to classes. Some examples of the entropy—calculation
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function are based on information theory [Qui86], and other user—provided functions such
as the Gini function [WK91].

Post—processing modifies the final model candidate generated. It usually involves re-
moving the model atoms from the model candidate. One example of post—processing is C'4.5
error-based pruning on a decision tree generated from the C'4.5 algorithm. This pruning
technique has been shown to be effective in remedying the problem of over—generalization
in decision trees.

Bias is an interactive mechanism for a user to override choices made by the model
candidate generator. User bias can override the stopping decision of the model candidate
generator or force the model candidate generator to expand a specific model atom. User
bias can also override a decision by the model candidate generator by making an expandable
model atom non-expandable, or vice versa. For model atom expansion, a user might select
a data attribute which is different from the one suggested by the algorithm, based on the
data—entropy—calculation function. The child model atoms generated can be merged into
one model atom by grouping several discrete data attribute values together, or a single child
model atom can be split up into several model atoms by multiple cuts in continuous data
attribute values. For example, in Figure 6(b), user might want to merge two values of the
Outlook attribute, “overcast” and “rain” into one called “not sunny” and then merge two

corresponding child model atoms into one child model atom.

4.2 Steps In Visual Algorithm Development

The set of all possible model candidates is too large to allow any classification—learning
algorithm to perform an exhaustive search for an optimal model candidate. All of the
existing algorithms are greedy in nature, since a decision to expand one model atom by a
chosen data attribute is based on local entropy gain and is final. As the result of this greedy
nature, it is entirely possible that a different model atom expansion, based on another data
attribute of lower entropy gain, leads to a better final model candidate. This fact implies
that no single algorithm is the best all the time and that performance is highly data—
dependent.

The VQLBCI framework proposed in this paper enables users to find an algorithm that
works the best on a given data set. By changing different predicates of model constraints,
users can construct a new classification-learning algorithm.

We show how to develop an algorithm, BF', based on the Best-First search idea. For
acceptability criteria, in addition to the default predicate which has the total number of
expandable leaf model atoms, we include the acceptability predicate 2 with an overall error
rate. The predicate 2 allows a user to specify an acceptable error rate for the decision tree.

The traversal strategy chosen is Best—First, where the expandable leaf model atoms are
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Algorithm H Accept. Predicate | Traversal Strategy | Exp. Predicate Post—processing

Cc4.5 Al T1 E1,E2 none
C4.5P Al T1 El1,E2 error-based pruning
BF A1,A2 T3 El1,E2 none
CDP Al T2 E3 none
CDP+ Al T2 E4 error-based pruning

Table 2: Comparison of different classification learning algorithms

ranked according to the decreasing order of the number of misclassified training cases. The
number of misclassified training cases can be calculated by (local error rate) * (size of the
subset training data set). The traversal strategy will expand a model atom that has the
most misclassified training cases, thus possibly reducing the overall error rate the most. For
the expandability predicate, default predicates on the local error rate and entropy gain are
used. For the data—entropy—calculation function, a function based on information theory is
chosen for the algorithm.

We can also construct a new algorithm by modifying existing algorithms and combin-
ing useful features of different algorithms. We propose a new algorithm CDP+, which

is a modification of CDP. CDP has dynamic pruning using the expandability constraint
( depth—1
mazxlength

of the training data set of the model atom. We want our algorithm to generate a deeper

)2 < local error rate. We modify the depth in the predicate according to the size

subtree at the model atom if the size of the training data set at the model atom is larger
than expected. We set adj_depth = —logb(%), where b is the estimated branching factor of
the decision tree, t is the size of training data set belonging to the model atom, and T is
the size of the whole training data set. We also adopt the error-based pruning of C4.5 in
the post—processing of the CDP+ algorithm.

Table 2 compares different learning algorithms based on 3 different criteria of model
constraints and post—processing. Data—entropy—calculation function is omitted, since all

the algorithms use a function based on information theory.

5 Experimental Evaluation of Visually Designed Algorithms

To validate the usefulness of our methodology of algorithm development using visualization
we carried out experiments that compare the new algorithms BF and CDP+, developed in
our framework, to other well-known classification algorithms. In this section we describe

our experimental methodology and the results obtained from the experiments.
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Attribute Description Value

salary salary uniformly distributed from 20000 to 150000

commission commission salary > 75000 = commission = 0 else
uniformly distributed from 10000 to 75000

age age uniformly distributed from 20 to 80

elevel education level uniformly chosen from 0 to 4

car make of the car uniformly chosen from 1 to 20

zipcode zip code of the town uniformly chosen from 9 available zipcodes

hvalue value of the house uniformly distributed from 0.5k100000 to 1.5k100000
where £ € {0---9} depends on the zipcode

hyears years house owned uniformly distributed from 1 to 30

loan total loan amount uniformly distributed from 0 to 500000

Table 3: Description of Attributes

5.1 Experiment Design

Candidate Algorithms: We have chosen to compare the new BF and CDP+ algorithms
with the C4.5 and the CDP algorithms. The C'4.5 algorithm generates a decision tree for
the given training data set by recursive partitioning of the data. The algorithm considers all
the possible tests that can split the data set and selects a test that gives the best information
gain. The algorithm generates a large decision tree which can either fully classify the entire
training data set, or which will stop without further partitions along branches which do
not give any information gain. The over—fitted tree is then pruned, using a predicted error
criterion, by replacing some subtrees with leaves or some intermediate nodes with some
subtrees. For comparison purposes, we show the results with pruning (C4.5P) and without
pruning (C4.5).

CDP has been developed as part of the Quest project [AIS93] at the IBM Almaden
Research Center. This algorithm has been shown to have comparable accuracy to the C'4.5
algorithm, while generating a relatively smaller number of nodes. The CDP algorithm uses
a dynamic pruning criterion to stop the generation of decision nodes if the error rate at a
node of the tree is below some adaptive precision threshold.

Benchmark Data: We have followed the experimental methodology described in
[AIS93] very closely. Our data set consists of records with the attributes described in
table 3. Attributes elevel, car and zipcode are discrete attributes, while all the other
attributes are continuous. The data records are divided into classes based on classification
functions of varying complexity. These functions are explained in detail in the Appendix.

Dataset Generation: Data records are generated by randomly generating values for
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the different attributes using independent random streams of numbers. The data sets
generated are divided into training sets and test sets. The records in both the training set
as well as the test set are then assigned class labels using the selected classification function.

To model noise in the data we also have a noise factor which is an input to the data—
generation program. After assigning classes to the data records, we perturb the continuous
attribute values based on the noise factor. Given a perturbation factor of p, the value of
a continuous attribute is changed to lie within v + %, where v is the original value of the
attribute, and r is the range of values the attribute can take. In our experiments we have
set the noise factor at 5%.

Following the strategy in [AIS93], we have selected training set sizes of 2500 tuples and
test set sizes of 10000 tuples. We have generated 10 sets of data for the experiment. We
used the same set of 10 functions described in [AIS93] for our experiments.

Performance Metrics: We have selected the following metrics to compare the effi-
ciency, accuracy and size of final decision trees of the classification algorithms. The gener-
ation efficiency of the nodes is measured in terms of the total number of nodes generated.
The size of a final decision tree is measured in terms of the number of the nodes in the
final tree. To compare the accuracy of the various algorithms we have measured the mean

classification error on the test data sets.

5.2 An Experiment and Its Results

Our BF algorithm can use two different model candidate attributes, overall error rate and
total number of model atoms, for the acceptability constraint predicate. For this experiment,
we chose a 6% overall error rate as the acceptable error rate. We do not have a copy of the
CDP algorithm, and thus we simulated the algorithm based on the description in [AIS93].
CDP uses a parameter maxzlength for the adaptive precision threshold. We have chosen 10
for the parameter, which is the choice in [AIS93]. We also used the same value for CDP+.
The experiments are repeated 10 times to obtain confidence intervals of 95 percent for the
mean error values.

The experimental results of various classification algorithms are shown in Figure 7,
Figure 8, and Figure 9. Figure 7 compares the classification errors of the different algorithms
on the y-axis for each of the 10 classification functions plotted on the x-axis. Figure 8
compares the generation efficiency of the different algorithms. On the y-axis, the number
of nodes generated are shown for each classification function. Figure 9 compares the size of
the final decision trees of the different algorithms. On the y-axis, the number of nodes in
the final decision trees is shown for each classification function. The final tree size for all
algorithms except C'4.5P is the same as the number of nodes generated.

As noted in [AIS93], the result shows that CDP has accuracy comparable to C'4.5, while
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Error Rate: C4.5, C4.5P, BF, CDP, CDP+
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Figure 7: Comparison of classification error for 10 data-sets. Five bars are shown for each
problem. They represent C4.5, C4.5P, BF, CDP and CDP+ from left to right.

Number of Nodes Generated: C4.5, C4.5P, BF, CDP, CDP+
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Figure 8: Comparison of nodes generated for 10 data-sets. Five bars are shown for each
problem. They represent C4.5, C4.5P, BF, CDP and CDP+ from left to right.
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Final Decision Tree Size: C4.5, C4.5P, BF, CDP, CDP+
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Figure 9: Comparison of final decision tree size for 10 data-sets. Five bars are shown for
each problem. They represent C4.5, C4.5P, BF, CDP and CDP+ from left to right.

generating considerably fewer nodes. It can be seen that the error rate of CDP is higher than
that of C4.5P in most of the functions. BF produced decision trees that approximately
met the user’s acceptable error rate (6%) on the testing data set for most functions except
function 7 and 9. In general, BF with a 6% acceptable error rate generated a smaller
number of nodes than CDP, but it has a higher error rate. We set a 6% acceptable error
rate for all 10 functions in this experiment. However, as we adjusted the error rate for
individual functions, we were able to produce decision trees with a lower error rate that is
comparable to CDP. CDP+ consistently outperformed CDP in error rate and number of
nodes generated. It can be also seen that the accuracy of CDP+ is comparable to C'4.5P
while generating a considerably smaller number of nodes than C4.5P. Even compared to
the final tree size of C'4.5P trees, CDP+ generated fewer nodes in all the functions.

The experimental result shows that CDP+ is the best overall algorithm for the 10 func-
tions and the data set we generated, when we consider all the performance metrics together.
However, if you consider classification accuracy alone, C4.5P is the winner. For function
8, even though BF has a tree times greater error rate than the other algorithms, it pro-
duced decision trees with 10 to 40 times fewer nodes. Depending on user requirements,
this decision tree may be preferable over those found by other algorithms due to its excep-
tionally small size. Different data sets require different algorithms for the best results, and
diverse user requirements put different constraints on the final decision tree. The experi-

ment shows that our interactive visual data mining framework can help finding the most
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suitable algorithm for a given data set and group of user requirements.

6 Conclusions and Future Work

Visual data mining shows great promise. It can help bring in user insights, preferences
and biases to the earlier stages of the data-mining life-cycle to reduce overall computation
complexity and reduce the set of uninteresting patterns in the product. Even more useful
may be the new insights developed by the data miners and analysts regarding the quality
and implications of the decisions made by the data-mining process. These new insights may
facilitate the development of better algorithms and processes for data mining.

We have proposed a conceptual data-model-based framework for visual data mining in
terms of a visual query-language-based control interface (VQLBCI). This reuses common
concepts from query languages such as the SQL which are widely used in the database
community and can be related closely to the data mining context. The query language
allows users to do powerful selections, subsetting, summarizations and updates to the visual
representations. These operations are frequently required in a visual data-mining system.
In addition, the visual representations have event-computation associations. Users can
launch the pre-associated computations (e.g. queries) via a simple click of a mouse-button
or another input device. The query results and other database objects have associated
user-defined visual representations and hence, results of queries can be visually presented
to the user. Implementation of VQLBCI reuses existing database engines as well as existing
window systems (e.g. X-windows). In addition, VQLBCI manages the mapping between
the database engines and window systems by managing the associations such as <visual
representation, database objects> and <visual representation atoms, event, computations>.
It also allows the definition of new visual representations for domain-specific diagrams and
pictures.

We provide a generic search-based interface with VQLBCI to visualize the quality and
nature of decisions made by decision tree learning algorithms such as C'4.5 [Qui93]. We have
developed two new algorithms, namely BF and CDP+, and evaluated their performance
with 10 datasets from the literature. BF uses best-first ordering to expand the frontier
nodes of the decision trees instead of the conventional depth-first or breadth-first criteria.
CDP+ uses error-rate and prevalence-based pruning criteria instead of the CDP -pruning
criteria, based on error-rate and depth. Experimental results show that BF has a new
capability to guide the construction of decision trees based on the overall error-rate criteria.
In addition, CDP+ often outperforms several decision-tree learning algorithms in error rate
and number of nodes generated. This illustrates the promise of VQLBCI in developing new
insights towards improving the data-mining processes and algorithms.

Future work includes further evaluation and refinement of VQLBCI. The evaluation of
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visual algorithm development using VQLBCI needs more experimentation with additional
data-sets. We plan to use VQLBCI as an algorithm animation tool in our research, and to
further explore interactive construction of decision trees by allowing users to override and
refine the decisions made by the data-mining process at run-time.

VQLBCI may be extended in the future to support other conceptual data models such as
multi-dimensional space, graphs/networks, etc. Performance issues in implementation need
a lot of exploration. Even reused components such as databases and window systems may
need refinement to better support visual data mining. For example, current window systems
cannot handle billions of objects for interactive exploration. However, many databases
contain billions of objects, and interactive data mining may occasionally require browsing
of such large data-sets. Window systems may need to use hierarchical management of such
large datasets by viewing visual representations as indices rather than as collections of
actual objects.

We would like to explore the parallel implementation [KGGK94, KSA94] of search al-
gorithms, which is more complex than sequential algorithms. We will use the VQLBCI
framework as the front-end interface and will provide users with different ways to run data
mining algorithms: in parallel or distributed over available computing resources. We would
also like to explore whether a search framework can help in developing new insights and al-
gorithms for discovering other patterns such as association rules, clusterings and sequences.
Another area of interest is in exploring specific data mining application domains such as
database integration [GSR96], semantic query optimization [SHKC93] and generalization
[AS92].
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Appendix

A: Common VDM tasks in the VQLBCI framework

Browsing or observation is a very frequent activity required in a data mining operation. Very often the
user may need to look at the distribution of data along various parameter axes to obtain visual clues to
the hidden patterns. [KKS94] suggests some methods for the visual representation of data for this purpose.
Visual representations can also help in browsing the learned models of knowledge from the data. For example,
in the case of classification rules the user can visually inspect various nodes in a decision tree learned from
the data and can see the effect of various attributes on the classification rules. In the case of association rules,
the user may want to browse through the rules to select and view those which contain specific attributes in
either the implicant or the consequent. More information regarding the quality of the learned model, such as
the accuracy of the decision tree or the prevalence of the association rules, may also be visually represented
along with the models. These may be displayed by queries on the visual representations to create new visual
representations of the requested information.

Another task in data mining which can be aided by the VQLBCI framework is the guidance of the
learning process. Users may provide guidance to the mining process at any stage. For example, in the
case of learning a decision tree for classification, the user may provide grouping of several discrete attribute
values to improve the quality of the rules learned. If the quality of the classification tree is not substantially
improved by the expansion of some nodes, the user can also suggest that the mining algorithm not expand
such nodes. The user could compare the results of two queries by issuing the queries in two different windows
and then resizing/rearranging the resulting windows properly. The resulting visual representations from a
query may be refined by the user by redefining the parameters of the conversation procedure using a query
language interface. For example, let us consider a query retrieving the current traffic speed in different
sections of a highway network. A visual representation may convert the numeric range (> 80% of speed
limit) to green, (50% — 80% of the speed limit) to yellow and (< 50% of the speed limit) to red color for a
map-based visual representation. The translation between attribute-value range and color can be redefined
by the user by updating the conversion procedure parameters via a query.

Some other tasks in the data-mining life cycle can also be performed better using the VQLBCI frame-
work. Evaluation and modification of the data-mining process, including its inputs and products, can be
done through visual inspection and queries. The data quality of the learning samples as well as the ware-
house data can also be visually inspected. The user can specify range checks on values and other constraints,
and violations of this may be fed back through visual representations.
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B: Classification functions

For our experimental evaluation we have selected the classification functions used in [AIS93]. These functions
are described below. Each record was classified as either Group A or Group B. We describe only the
conditions for a record to be classfied as Group A; all others are classified as Group B. The functions below
use a C language like syntax for the sequential conditional expressions P 7 Q : R. This is equivalent to the
logical expression (P A Q)V (P A R).

Function 1
(40 > age > 60)

Function 2
((age < 40) A (50K < salary < 100K))V
((40 < age < 60) A (75K < salary < 125K))V
((age > 60) A (25K < salary < 75K))

Function 3
((age < 40) A (elevel € [0---1]))V
((40 < age < 60) A (elevel € [1---3]))V
((age > 60) A (elevel € [2---4]))
Function 4
((age < 40) A (((elevel € [0---1])?(25K < salary < 7T5K) : (50K < salary < 100K))))V
((40 < age < 60) A (((elevel € [1---3])?(50K < salary < 100K) : (75K < salary < 125K))))V
((age > 60) A (((elevel € [2---4])?(50K < salary < 100K) : (25K < salary < 75K))))

Function 5
((age < 40) A (((50K < salary < 100K)?(100K < loan < 300K) : (200K < loan < 400K))))V
((40 < age < 60) A (((75K < salary < 125K)?(200K < loan < 400K) : (300K < loan < 500K))))V
((age > 60) A (((25K < salary < 75K)?(300K < loan < 500K) : (100K < loan < 300K))))

Function 6

((age < 40) A (50K < (salary + commission) < 100K))V

((40 < age < 60) A (75K < (salary + commission) < 125K))V

((age > 60) A (25K < (salary + commission) < 75K))
Function 7

disposable > 0 where,

disposable = (0.67 * (salary + commission) — 0.2 x loan — 20K)
Function 8

disposable > 0 where,

disposable = (0.67 * (salary + commission) — 5000 x elevel — 20K)
Function 9

disposable > 0 where,

disposable = (0.67 * (salary + commission) — 5000  elevel — 0.2 * loan — 10K)
Function 10

disposable > 0 where,

disposable = (0.67 * (salary + commission) — 5000 x elevel 4+ 0.2 x loan — 10K)
equity = ((hyears < 20)?(equity = 0) : (equity = 0.1 % hvalue * (hyears — 20)))
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