Interactive Multi-User Multimedia Environments on the Internet:
An Overview of DAMSEL and Its Implementation

Paul Pazandak, Jaideep Srivastava
Distributed Multimedia Center
Department of Computer Science, University Of Minnesota
pazandak|srivasta@cs.umn.edu
http://www.cs.umn.edu/~pazandak /damsel.html

Abstract

This paper presents an overview of DAMSEL and
it’s implementation. DAMSEL is comprised of an em-
bedable dynamic multimedia specification language, and
a software architecture suitable for mulli-user interac-
tive multimedia environments. The goal of DAMSEL is
to explore language constructs and execution environ-
ments for next-generation interactive multimedia ap-
plications. The constructs of DAMSEL include primi-
tives for event-driven temporal specification — support-
ing causation and inhibition. Specifications allow be-
havioral parameters to be chosen, enabling very power-
ful temporal relations to be defined. Other constructs
support the modification and analysis of multimedia
data, and high-level abstractions for connections to
user interfaces. Further, DAMSEL constructs support
conditional and constraint logics, enabling more com-
plex specifications than currently possible. DAMSEL is
being implemented using a java implementation of the
CORBA standard.

1. INTRODUCTION

To date, several research projects (such as [1]) and
commercial products have focused on providing lan-
guages and applications to develop multimedia presen-
tations. These solutions enable a user to produce non-
interactive and sometimes hypermedia-based or inter-
active presentations. Most of these provide a graphical
development environment, or a scripting language to
define the presentations. However, for an application
developer integration into other application environ-
ments which are developed using C, C++-, and now
Java, for example, can be difficult. In addition, most
(if not all) of these solutions produce only single-user

0-8186-7436-9/96 $5.00 © 1996 IEEE
Proceedings of MULTIMEDIA *96

287

presentations that simply allow the viewing of multi-
media data.

DAMSEL, a DynAmic Multimedia SpEcification
Language, enables developers to more easily write
multi-user interactive and collaborative applications
that can retrieve, view, modify, analyze, and store mul-
timedia data. DAMSEL provides these features using
three language components and an underlying software
architecture: the dynamic event-driven temporal com-
ponent, providing interaction-driven media and event
orchestration mechanisms; the dataflow component,
handling retrieval, modification, analysis and storage;
and, the presentation component, handling the presen-
tation/viewing of multimedia. DAMSEL is composed
of just a few predicates so that it can be easily em-
bedded within another language, eliminating the need
to learn and use an entirely new language, compiler,
and programming environment. The software archi-
tecture supports the execution of DAMSEL statements
using the run-time event manager, dataflow manager
and presentation server. A portion of this architec-
ture is currently being implemented using a java-based
CORBA product, Post Modern’s BlackWidow. This
software will allow us to execute DAMSEL across the
internet on all platforms that support java.

The goal of DAMSEL is to explore multimedia
language constructs and supporting execution en-
vironments for next-generation interactive raultime-
dia application development. The basic features of
DAMSEL include declarative specifications (strictly
non-procedural), expressiveness, simplicity, conditional
and constraint logics, extensible behavioral specifi-
cation parameters, programming language-embedable,
and an open systems approach enabling current soft-
ware to be integrated. In addition, we are investigating
a subclass of complex sequence-based event detection
(time-sequence detection) and the creation of a time-

sequence event definition language to detect motion-
based user interaction.

In the following three sections we present an
overview of each language component; this is followed
by a discussion of the current architecture.

2. Temporal Component

As described above, DAMSEL has three language
components that provide high-level constructs for cre-
ating interactive applications capable of retrieving,
modifying, analyzing, viewing and storing multimedia
data.

The foundation of these is the event-driven tempo-
ral language component. Specifications can be defined
by users and application developers to represent the
behavior of the system. Each statement within a spec-
ification defines either an excitatory or inhibitory re-
lationship between some set of events. Simply, when
one event occurs, it excites (or causes) another event
to occur (or inhibits another event from occurring).
Since system, application and user interactions are in-
terpreted as events, the actual behavior of the system is
determined only at run-time as occurring events cause
other events to be generated, based upon the specifi-
cations (which can be submitted at run-time). In ad-
dition, the behavior of each statement within a spec-
ification is dictated by an extensible set of behavioral
parameters. It is this, in part, that enables DAMSEL
to express all of the temporal relationships expressible
in any of the sixteen other models we compared [3].

To orchestrate the delivery of media objects, a tem-
poral specification is defined; its structure is regulated
by a temporal specification model. There is a wide
range of proposed (and implemented) temporal specifi-
cation models to date [5] — timeline, hierarchic, syn-
chronization point, and more recently, event-driven.
At one end of the spectrum, a temporal specification
model may be static, only allowing the time of de-
livery to be tied to a clock. At the opposite end, a
model such as DAMSEL has, will support dynamic
interaction-driven specifications by enabling a behavior
of the system to be specified, while the actual execu-
tion (different for each user) will depend upon system,
application, user-media, and user-user interactions (as
well as user profiles, user performance, resource avail-
ability and data loss, for example).

In addition, a finer level of synchronization is re-
quired to coordinate the presentations of media objects
that have a high degree of temporal interdependency to
support lip-synchronization, for example.

The temporal component of DAMSEL is based upon
an event-driven approach and includes two simple, yet

288

powerful relations for expressing activation, inhibition
and fine-grain synchrony. The rest of this section pro-
vides a brief overview, while a more extensive descrip-
tion can be found in [3].

We implement activation and fine-grain synchro-
nization using the predicate “causes”, and inhibition
using “defers”. DAMSEL also addresses static and dy-
namic specification conflict resolution [4].

Within DAMSEL, we define causality (activation)
using two events, x and y, such that “the occurrence of
event x causes the occurrence of event y,” where event
x is the trigger and event y is the bullet associated with
some action that will be invoked. Causal relations are
defined using the predicate causes. It takes two events,
EVTx and EVTy; an optional range delay interval, d
(di,d;); an optional set of system-defined extensions
(behaviors), and a statement name, s;:

sy::causes (EVTx, EVTy, d, {set-of behaviors})

The basic specification should be interpreted as:
“The occurrence of EVTx will cause the occurrence
of EVTy.” EVTy will occur at [the occurrence time of
EVTx + a valid value within the range d}, executed
using the specified set of behaviors. Note that EVTx
can be defined as any event or condition composed of
DAMSEL’s conditional logic and standard logical and
relational expressions using global variables. In addi-
tion, EVTy can be a set of events.

While activation brings about the occurrence of an
event, in DAMSEL we define a means to inhibit (or
defer) an event from occurring. Deferment could be
thought of as an inhibitory synapse which is applied to
a neuron (event) to inhibit it from firing, while causa-
tion is similar to an excitatory synapse which causes
a neuron (event) to fire. In DAMSEL, deferment is
specified using the defers predicate. It takes one event,
EVTy, an interval event INTa, an optional delay value,
D, (default = 0), an optional set of system-defined ex-
tensions (as described earlier), and a statement name.
It has the following form:

sy:idefers (INTa, EVTy, D, {set-of behaviors})

This specification should be interpreted as: “INTa
defers EVTy”; or, not quite so terse as: “if event y
would occur during interval INTa, the occurrence of
event EVTy will be deferred at least until after the
occurrence time of interval INTa’s end event (+ delay
value D).” As above, EVTy can be a set of events to
be deferred. In addition, INTa can also be specified
as any two bounding events, EVTa and EVTb, which
describe some interval.

Figure 1. An Overview of the DAMSEL Project

3. Dataflow Component

The dataflow language component [4] is based upon
a stream model, whereby the media objects are mod-
eled as continuous streams, flowing from sources to
sinks. The sources can be storage devices, or live de-
vice sources such as microphones and video cameras;
while examples of sinks may include graphical layouts,
external processes, and storage devices. The streams
can be modified, and analyzed en route to the sinks
by defining paths that include such operations which
the streams must pass through (see Figure 1). Other
work such as [2] have also used this basic model aug-
mented with graphical interfaces. The language of this
component would also be suitable for such an interface.

A specification defines the order in which these oper-
ations should be connected together to create the path
which the stream will follow. In DAMSEL, sources
have outlets, sinks have inlets, and operations (or
source-sinks) have inlets and outlets — these are all clas-
sified as stream objects. Each stream object may have
one or more inlets and/or outlets, which is specified as
part of an object’s definition. Therefore, a specification
must indicate which outlets and inlets are connected
together. If the objects being connected together each

289

only have one inlet and outlet respectively, then they
do not need to be indicated. The basic syntax describes
one connection (using minimal canonical form):

s; 1t streamObj;.name(outlet,,) —
streamObj; name(inlet,,)

where each streamObj;.name is a specific
instantiation of a stream object of type streamObj;.

4. Presentation Component

The presentation language component supports
specifications which control the connection and deliv-
ery of streams to consuming processes, windows, and
devices via adapters. These may include display device
cards and complex layouts defined by graphical toolk-
its. The presentation component includes a server (act-
ing as a dataflow sink) to which streams are connected
in the dataflow component — any number of streams can
be connected to a presentation server (see Figure 1).

Within the presentation server, “complex outlets”
can be defined using any combination of streams that
are attached to the server. Complex layouts can be
thought of as views that are used within database ap-

Specif.s

DAMSEL Runtime
Event Manager

- JAVA LANGUAGE -

JAVA LANGUAGE:
JAVA LANGUAGE

Figure 2. DAMSEL's Execution Environment

plications — allowing the user to select a view appro-
priate for the context in which the data is being pre-
sented. Layouts and devices connecting to the server
then use compatible adapters to make connections with
server outlets. Adapters can be mated with any outlet
whose composition matches the adapter’s composition.
Since specifications from the dataflow and presentation
components can be used within specifications from the
temporal component, DAMSEL also supports dynamic
dataflow and presentation specifications

5. Implementation

Currently, we are implementing the temporal com-
ponent and the underlying software architecture using
a java-based CORBA environment. This architecture
is suitable for multiple collaborating users (see Fig-
ure 2), while a single client could be used for standalone
applications. All client-server and client-client commu-
nications are handled by the CORBA services. For
master-slave applications, the server run-time event
manager controls the overall execution through state-
ments (and additional server code if desired). Clients
send important events to the server. A client’s lo-
cal run-time event manager handles localized interac-
tion with the application, and client-client interaction.
Client-directed statements execute locally and do not

290

need to communicate with the server. Each run-time
event manager manages it’s set of statements, and any
new statements submitted to it. Simple or complex
events and conditionals associated with a trigger are
detected using an optimized object-based implemen-
tation of the GridMatch algorithm [6] (defined for AI
production systems) which allows sharing of subcon-
dition evaluation across multiple statements. When a,
statement’s trigger becomes true, the bullet is fired and
the associated events are sent to the event scheduler for
execution (using the set of specified behaviors).

The presentation manager controls the delivery of
multimedia to the application or screen. The con-
tinuous data manager is not currently being imple-
mented due to throughput constraints of the inter-
net. Instead, continuous media can be downloaded to
the client ahead of time for presentations using video.
Finally, the client application can be written in java
to define the user interface and additional application
code. This architecture would be suitable, for example,
for internet-based multi-user assisted learning environ-
ments with self-exploration, and small group interac-
tion and collaboration. A more detailed description of
our implementation will be available at our website,
and in an upcoming paper.

References

[1] Drapeau, G.D. and H. Greenfield. “MAEstro - A
Distributed Multimedia Authoring Environment,” in
USENIX. 1991. Nashville, TN.

Gibbs, S. “Application Construction and Component
Design in an Object-oriented Multimedia Framework,”
in Network and Operating Systems Support for Digi-
tal Audio and Video. Third Int’l Workshop Proceedings.
1992. Germany.

Pazandak, P., J. Srivastava and J. Carlis, “The Tempo-
ral Component of DAMSEL,” Second Workshop on Pro-
tocols for Multimedia Systems (PROMS ’95), Salzburg,
Austria, 1995.

2]

Pazandak, P., J. Srivastava, “The Language Compo-
nents of DAMSEL: An Embedable Event-driven Declar-
ative Multimedia Specification Language” SPIE: Elec-

tronic Imaging International Conference, Photonics
East ’95, Pittsburg, PA., 1995.

Steinmetz, R., “Synchronization Properties in Multime-

dia Systems,” IEEE Journal on Selected Areas in Com-
munications, 1990. 8(3): p. 401-412.

Tan, J.S.E., M. Maheshwari, and J. Srivastava, “Grid-
Match: A Basis for Integrating Production Systems
with Relational Databases,” IEEE Conference on Tools
with Al 1991.

