
A Multimedia Programming ToolkitEnvironment *

Raja R. Harinath, Wonjun Lee, Shwetal S. Parikh, Difu Su,
Sunil Wadhwa, Duminda Wijesekera, Jaideep Srivastava

Department of Computer Science, University of Minnesota, Minneapolis, MN 55455

Deepak R. Kenchammana-Hosekotet
IBM Almaden Research Center, San Jose, CA

e-mail: ~harinath,wjlee,ssparikh,sdf,wadhwa,wijesek,srivasta} @cs.umn.edu, kencham @ almaden.ibm.com

Abstract
This paper provides details and implementation experi-

ences of a multimedia programming language and associ-
ated toolkits. The language, a data-flow paradigm for mul-
timedia streams, consists of blocks of code that can be con-
nected through their data ports. Continuous media flows
through these ports into and out of blocks. The blocks are
responsible for the processing of continuous media data.
Examples of such processing include capturing, display-
ing, storing, retrieving and analyzing their contents. The
blocks also have parameter ports that specify other per-
tinent parameters, such as location, and display charac-
teristics such as geometry, etc. The connection topology
of blocks is spec$ed using a graphical editor called the
Program Development Tool (PDT) and the geometric pa-
rameters are spec$ed by using another graphical editor
called the User Interface Development Tool (UIDT). Expe-
rience with modeling multimedia presentations in our envi-
ronment and the enhancements provided by the two graph-
ical editors are discussed in detail.

1 Introduction
The last few years have seen an explosive growth of in-

terest in multimedia systems, leading to its emergence as
an independent discipline of study in computer science.
Given the strong interest in the systems aspects of mul-
timedia, a number of systems, both prototype and com-
mercial, displaying varying levels of sophistication, have
been built, and this trend is on the increase. A common
observation is that a lot of effort has been spent, but the
end products are not as good as expected, e.g. experi-
ence with Presto [l], CMT [2], and Macromedia Direc-
tor [3]. We believe the reason is that the current paradigm
for developing multimedia software is not suitable to the

*This work is supported by Air Force contract number F30602-96-
C-0130 to Honeywell Inc, via subcontract number B0903054UAF to the
University of Minnesota.
t Work done while at University of Minnesota

task. To draw an analogy from the disciplines of artificial
intelligence and databases, before the emergence of Lisp
and SQL, respectively, AI programming and database pro-
gramming were extremely cumbersome tasks where natu-
ral paradigms could not be used because of lack of adequate
tools and environments. Once the appropriate paradigms
were devised, and their corresponding programming lan-
guages and software development tools realized, program-
ming in these disciplines was simplified. Programmers
could now focus on the real challenges rather than trying
to force fit an unsuitable paradigm to the task at hand.

Based on the results of a number of research efforts in
multimedia programming and models, we believe that mul-
timedia software development is ready to emerge from its
nascent era of ad-hoc programming to one of a more sys-
tematic one [2 , 3, 4, 53. There seems to be an emerging
consensus that the natural model to think about a multime-
dia programs is as a directed graph, through which multi-
media streams flow. The nodes of the graphs, called blocks
in Presto [11, represent operations that modify streams as
they flow through them, while (directed) edges represent
the input-output connections between such operations.

Development of a programming paradigm is followed
by designing new languages and associated set of devel-
opment tools. This paper reports those designed and im-
plemented for the multimedia programming language of
Presto. Based on experiences in software engineering and
language design, it is our hope that these tools will make
it easier to write Presto programs, and consequently guide
us in enhancing Presto’s programming language and inter-
face. Accordingly, we report our design and experiences
that will hopefully contribute to the experience needed for
designing a good multimedia programming language.

52 describes Presto’s block-based programming model
and its execution environment. 53 describes our toolkit sup-
port for Presto programmers. 54 describes a comprehen-
sive example constructed using our toolkit and executed on
Presto. Finally, 55 contains our concluding observations.

446
0-8186-8227-2/97 $10.00 0 1997 IEEE

mailto:cs.umn.edu
http://almaden.ibm.com

2 Presto
Many continuous media (CM) applications can be mod-

eled using the data flow paradigm [5 , 61. In such a
paradigm, an application program consists of a collection
of data pipes that regulate flows of CM streams through
functional blocks, which encapsulate functions or opera-
tions that are performed on CM streams. The pipes and
blocks are connected in a directed graph to achieve the
overall functionality of the application. Typically, CM data
is produced by source blocks (camera, disk, microphone,
etc.) and consumed by sink blocks (display, speaker, etc.).
Between source and sink blocks, pipes connect intermedi-
ate blocks that perform various processing (image recogni-
tion, thresholding, synchronization, etc.) functions. Fig. 1
illustrates an example application.

2.1 Programming Model
Presto supports the construction and execution of dis-

tributed multimedia applications from a set of primitive
blocks via a rudimentary programming language.

A Presto primitive block is a functional unit that oper-
ates on the input data and produces some output data. It
consists of a pre-compiled chunk of code that implements
its functionality, a set of dutu ports that can be used to pipe
inlout CM data, and a set of parameter ports that can be
used to initialize or change some parameters in the chunk
of code that implements the functionality of the block. Cur-
rent primitive blocks provide the functionality of capture,
storage and display of video and audio images, VCR op-
erations on CM streams and control functions provided by
and GUI development tool kit such as Motif.

Data ports are used to input/output CM data streams
from blocks, and are of two types according to their func-
tionality: input ports and output ports. Furthermore, when
two blocks are connected to each other, depending upon
which block is responsible for the data exchange they are
categorized as push and pull. As a consequence of our no-
tion of push and pull, if a push output port is connected to
a pull input port, then in order to avoid losing data a buffer
must be inserted. Conversely if a non-push output port is
connected to a non-pull input port then an activity block,
responsible for grabbing data from the former and stuffing
in the latter, must be inserted. Such insertions take place
automatically in Presto.

Parameter ports are used to communicate parameter
values of the functionality encapsulated by blocks, and pro-
vide control over CM data propagation through blocks.
Currently, Presto programs, communicate quality of ser-
vice (QoS) parameters such as rate, frame miss ratios, and
file names to store and retrieve CM streams through them.
An important class of paramleter ports are those that encode
the user visible behavior of some blocks. They consist of
geometric information such as the size and the location (the
name of the machine; the window; and the z and y offsets
on the window) of display frames, cameras, and control
panels (encoded in blocks) such as VCR buttons.

Composite blocks are recursively constructed by con-
necting appropriate blocks through appropriate ports in
their components, where thiz primitive blocks provide the
atomic level of this construction. A composite block with
no unconnected data ports is a Presto program.

Figure 1 has an example PESfO program, where MIMO
is an example of a composite block, which itself does not
qualify as a program, Ixcause it has exposed data ports.
Notice that, as the example .illustrates, program graphs can
have cycles. Cycles are common in applications that per-
form feedback control.

CM data exchanged between blocks is in units which
have a uniform format. Typically, a unit comprises a type,
a time stamp, and a raw datal segment. A JPEG frame, a set
of 1024 8-bit audio samples, etc. are examples of raw data
segments.

The following terminology is used in Presto. A block
with output ports but without input ports is said to be a
source; a block with input ports but without output ports is
said to be a sink; and a block with parameter ports to spec-
ify its user visible properties is said to be a user interface
block.
2.2 Presto Runtime

Presto programs are written as text files. The Presto
runtime interprets these programs to construct a session
that executes the desired program.

The session is created by identifying all the primitive
blocks specified in the program, and connecting them as
specified in the program. Since a program can include com-
posite blocks, the process of identification is recursive.

When a session executes, it uses resources such as exe-
cution threads, buffer space:, disk stubs', and communica-
tion channels. The Presto runtime includes resource man-
agers and schedulers ta handle these resources.

Presto provides applicat.ion transparent distributed exe-
cution of block prograims bly communicating among hosts
using ATM and Ethernet connections.

The Presto runtime consists of several modules, to han-
dle these various tasks. There is a pre-processor, a block

' A disk stub is a channel between the U 0 scheduler and an application
block.

447

based-program executor, a session manager, a system re-
source manager that sits on top of the operating system and
network services, and a storage manager for CM streams.

More details on the Presto system can be obtained from
[I]. Details of the resource scheduling algorithms can be
obtained from [7, 8, 91.

3 An Integrated Toolkit for Presto
Despite the diverse functionality of its runtime system,

one of the major successes of the Presto project has been
the development and implementation of a block-based pro-
gramming model. This provides a flexible and modular,
lego-like building-block approach to developing multime-
dia applications. In principle, an application builder should
be able to access a library of blocks and rapidly prototype
the desired application by re-using existing blocks from the
library and developing new ones where needed. If desired,
the new blocks can be added to the block library.

In order to exploit the ease and power of the Presto
programming language, we have designed a high-level ap-
plication development toolkit which can make the task of
multimedia application development more palatable. Our
choice of the toolkit has been dictated by the needs of
Presto programmers, which include specifying the blocks
and their port structure, specifying the connection structure
between appropriate ports, and instantiating values corre-
sponding to parameter ports. It is also immensely helpful to
the programmer to be provided with a verificatiodanalysis
tool that communicates both the errors and system limita-
tions in executing Presto programs.

In response to such needs, we have designed a toolkit
consisting of three tools, and developed two of them, to
run in harmony with Presto. They are the Program Devel-
opment Tool (PDT), the User Interface Development Tool
(UIDT) and the Program Analysis Tool (PAT).

The PDT allows the blocks and the interconnection
structure between them to be specified graphically thus
freeing the programmer from the task of specifying a graph
structure in a non-graphical language. The UIDT is a tool
used to specify the parameters that pertain to the user vis-
ible behavior of blocks (geometry, size, &.). The PAT
analyses a Presto program and verifies that it has no incon-
sistencies, and that the underlying system has the required
resources to exccute the program, rcsulring in significant
saving in the compile-debug-execute cycle time by par-
tially automating the error-detection mechanisms. Taken
together as a well integrated toolkit, they aim to eliminate
the drudgery from multimedia application development.
3.1 Issues in Designing an Integrated Toolkit

In developing our toolkit, we have learned from the con-
ventional wisdom gained in the areas of software engineer-
ing and user interface design. However, since these areas
are not the focus of this paper, we do not provide a detailed

survey of the alternative approaches developed. Rather, we
list the following principal lessons learned from these areas
which are relevant to us: (1) Graphically oriented tools are
much better than text oriented ones. (2) The tools must be
integrated in an environment such that an application de-
veloper can move seamlessly from one to the other. (3)
Since early detection of error has high potential benefits,
this process should be automated to the extent possible.

Multimedia information management environments are
expected to contain a wide collection of hardware and op-
erating system platforms. A serious practical difficulty this
poses is of system portability, a problem which is most
clearly evident in the case of graphical user interface (GUI)
development. For example, a GUI developed in the UNIX
environment using X Windows will not run on PCs, while
one developed on PCs using Microsoft graphical libraries
will not run in the UNIX environment. Hence, we believe
that portability of application development tools is a key re-
quirement that must be addressed from the beginning. To-
wards this, we build GUIs for the proposed tools using li-
braries such as Java [101 and Tcl/Tk [1 11 that are portable
across a wide variety of platforms.
3.2 Software Architecture

The system architecture pertaining to our development
efforts consists of three main components that help prepare
and setup the runtime of a distributed multimedia presen-
tation. As detailed in Fig. 2, it consists of a program de-
velopment tool, a user interface development tool and the
Presto [12, 13, 141 runtime support.

Figure 2: Architecture and Interactions between
UI Tools and the Runtime

The program development tool (PDT), developed in
Java, is used to construct a block model of a multimedia
application by connecting appropriate ports. It can also be
used to instantiate some block parameters such as their lo-
cation.

Using the location information provided by the PDT, the
user interface development tool (UIDT) can be used to in-
stantiate user-visible behavior of certain program blocks.
For example, a button block has user-visible behavior of
color, bitmap or label, geometry such as width, height and
the displacement of the upper left hand corner of the win-
dow panel in which it is placed.

In addition, there is other geometric information such
as the size, color and position of the window at local

448

sites throughout the distributed execution environment. Al-
though these are neither properties of the block program-
ming model nor that of any visible blocks, they contribute
to the aesthetic appeal of the demonstration. Hence, the
UIDT also specifies other visibility related parameters of
Presto program executions. The list of such parameters is
growing and is expected to encompass all properties that
appeal to the aural and visual senses associated with the
runtime environment.

As stated, the Presto runtime has a pre-processing stage
in which location information of all blocks are derived by
using a fragmentation algorithm. In case the program needs
to be distributed, the fragmentation algorithm inserts sys-
tem blocks that are necessary to allow distributed execu-
tion. These are blocks that facilitate communication, such
as network activity.

The PDT, UIDT and the Presto runtime communicate
through text files that can be read and written by all three
of them. This communication paradigm was chosen mainly
because of the independence of each component from the
other, the non-real-time nature of interaction between them
and the possibility of using or developing alternate tools for
each of the components.

Presto programs contain the parameters like position,
color and geometry of base local windows on which visi-
ble blocks appear, block names and types, number and type
of ports that are attached to each block, structure of inter-
connections between data and parameter ports, initial pa-
rameter bindings of parameter ports. Since the user visible
behavior of blocks are specified through parameter ports,
they do not require any additional support.
3.3 Program Development Tool (PDT)

A block in Presto is a basic unit that accepts some in-
put(s), carries out some transformation on it, and produces
some output(s). The functionality of the block is provided
by a chunk of code. To support a graphical program de-
velopment tool, however, each block must also have its
unique graphical (iconic) representation, which the devel-
oper can use to refer to the block during graphical applica-
tion construction. This idea has already been incorporated
in the Presto system. Fig. 3(a) shows the working of !.his
tool. The application developer creates a program, e.g., far-
get-recog, by connecting pre-existing blocks and/or defin-
ing new ones. The tool creates a file (target-recog.prog in
the example) which is used by other tools and passed to the
runtime.

The PDT works on a common input and output file syn-
tax. The user gets the PDT to read in an input file, which
is graphically displayed on the screen. The PDT thcn al-
lows the user to make the relevant modifications to this file
through its graphical editing capabilities. The capabilities
of the tool are described in $3.3.1. The user can modify and
save the changes in the same file.

3.3.1 Editing Capabilities'. Fig. 3(b) shows a screen cap-
ture of a sample run of the intelligence assistant module of
the example described later in 54. The module was created
by using the Program Deve1,opment Tool. When the user
double clicks on any of the blocks, a pop-up window is dis-
played which lists the pararneters and connections of the
particular block. The user can then modify, add or delete
any of the parameters or connections. The user can also
edit the source file of the particular block from this win-
dow. Fig. 3(c) shows a sample pop-up dialog box for a
block (Activitytllockp in this example).

Editing functions provided by the PDT include creating
new blocks, changing aind viewing block parameters, cre-
ating and changing connections between ports of blocks,
and editing code. The tool lhas undo facilities to mitigate
the effects of editing enrors. The tool also supports com-
posite (hierarchically specified) blocks, allowing users to
zoom into/out of composite blocks.
3.4 User Interface IDevelopment Tool (UIDT)

By using the PDT, an application developer can specify
what blocks are used in ithe program and how they are con-
nected with each other. However, there is still the issue of
specifying what the user-visible behavior of the application
will be, and how the user will1 interact with it. The purpose
of the UIDT i s to provide this capability. A key idea in our
approach is to introduce the concept of user visible behav-
ior of a block, which is described analogous to its interface
definition, functionality definition, and graphical represen-
tation. When a new block is added to the block library, its
user-visible behavior is stored with the object.

As shown in Fig. 4(a), the UIDT takes a program file
(e.g. target-recog.prog) as i.nput, and creates a palette for
the U1 developer to design the UI. The visual behavior of
each user-visible block of target-recog is made available to
the U1 developer. The 1JI developer designs the layout of
the user interface by modifying the user-visible behavior of
the blocks, and adding inodes of user interaction with the
application (if any). The UIDT modifies the file which is
then passed on to the runtime environment of Presto. User
Interface design has a substantial amount of human creativ-
ity, and we believe our approach will largely eliminate the
drudgery while allowing the UI developer to focus on cre-
ative aspects.
3.4.1 Design of the UIWK As a graphical user interface
tool, UIDT provides a WYSlWYG (What You See Is What
You Get) environment.

Each Presto prograrri can execute on multiple locations,
and each location is given a window of its own, called the
base window, or canvas. All canyascs have the same user
visible properties, which include offsets on the screen(%
and y), size(width and heigh,t), and a title.

The interface elements of user visible blocks are placed
on the canvas of the location the block has been assigned

449

(a) The PDT (b) PDT Main Screen (c) Dialog for ActivityBlock-p

Figure 3: Program Development Tool (PDT)

(a) The UIDT (b) UIDT window

Figure 4: User Interface Development Tool (UIDT)

to. Unlike canvases, different U1 Blocks have different user
visible properties. Even U1 Blocks of the same type have
differing user visible properties (e.g. some buttons have
bitmaps, some do not). When a new U1 Block is created, it
may also introduce some user visible properties unknown
to the UIDT; the UIDT is able to show and edit these un-
known properties.

Some properties are common to every U1 Block. They
are offsets(z and y), size(width and height), name and type.
In addition, bitmap and label are two common user visible
properties. The UIDT shows a U1 Block as a rectangle (if
it has a bitmap, shows its bitmap) with a screen represen-
tation of the six common properties. If the U1 Block has
a label, it is also shown. Other user visible properties are
shown in text fields.

Geometric properties (z and y offsets, width and height)
can be edited by moving and resizing the U1 Blocks. Other
user visible properties can be edited by changing corre-
sponding text fields. Dialog items can be selectedde-
selected, and be aligned in various ways.

3.5 Program Analysis Tool (PAT)
When blocks are connected to form block-based pro-

grams, the developer must ensure that the port connections
are correct, i.e. push and pull connections are appropri-
ately made, the data types match, and the flow rates (in
case of continuous media) are compatible. This is anal-
ogous to type checking in programming languages. Ex-
perience in programming language design has shown that
strongly typed languages lend themselves to better pro-

A sample UIDT window is shown in Fig. 4(b).

gramming discipline as well as less programming errors,
since one can perform compile time type checking. Lan-
guages without strong typing, provide programmers with
greater flexibility but tend to promote lack of programming
discipline and thus result in buggy code. The situation is
similar with a block-based programming language, and is
likely to be exacerbated with the introduction of operation
flows in addition to data flows. The ideas behind the pro-
posed PAT are similar. Currently the upper layers of Presto
runtime perform the pusWpull compatibility analysis. We
propose to move that functionality into the PAT. In addi-
tion, the PAT will perform data-type and operation-type
compatibility analysis for port connections in block-based
programs. Finally, for data ports through which continu-
ous media flows, the PAT will analyze the compatibility of
rate requirements. As shown in Fig. 5 , the PAT will take
target-recog.prog as input and produce target-recog.err as
output, which can be graphically presented to the program-
mer.

Figure 5: Program Analysis Tool

450

4 Example: Distributed Target Recognition

In order to demonstrate the capabilities of Presto and
its integrated toolkit, we provide details of a program that
was developed and executed on Presto using the PDT and
the UIDT. Our example consists of a hypothetical battle
scenario, with a distributed target recognition (DTR) appli-
cation.
4.1

In the example DTR scenario, live audiohideo broad-
casts arrive at a command post. They are first analyzed by
an Intelligence Assistant, whose job is to store the data on
a disk to be later analyzed by an Intelligence Analyst. The
intelligence analyst browses and selects potentially infor-
mative segments to be analyzed by the RSTA (the DARPA
Reconnaissance, Surveillance and Target Acquisition) im-
age analysis software, and stores it to be viewed by the bat-
tlefield Commander. The commander can view the anno-
tated clips and take appropriate action based on them. Our
encoding of this scenario is captured by three Presto pro-
grams, one for each role in the scenario, i.e., Intelligence
Assistant, Intelligence Analyst, and Commander.

This application is intended to be distributed across
workstations. The application user interface shall include
the corresponding U1 elements like video display, toggle
switches, VCR panels, image captures, listers, sliders, cap-
ture buttons, and file name specification blocks.

Fig. 6 shows the block-based Presto programs we cre-
ated using the PDT for our DTR example.
Intelligence Assistant The output of a camera is digit.ized
and presented to the intelligence assistant. A video spool-
ing capability (i.e. recording the video segment currently
being viewed to a named Presto file) is provided by an
ON/OFF toggle switch.

The intelligence assistant module (Fig. 6(a)), gets the
output of a camera and spools it to a named file. The con-
trols Record and Pause for spooling are provided by the
U1 block called ControlPanelp. Rate is specified using a
block called Sliderp. Presto transforms a user program
to a system program by locating push/pull incompatibili-
ties and connecting them by inserting special blocks like
ActivityBlockp or Periodic$. Between a pull output port
of Camerap and a push input port of WriteFilep, an Ac-
tivityBlockp is inserted by Presto, which is transparent to
the application programmer. The Presto file name is spec-
ified to the system by means of the block WriteFileName-
Specp. This is the mechanism by which a raw video input
is spooled to a Pfesto file by the intelligence assistant.
Intelligence Analyst The intelligence analyst module pro-
vides full VCR controls [lS] on the spooled Presto files
which are created by the intelligence assistant’s filtered
images. The intelligence analyst can view a previously-
spooled video file, scan forward or backward, freeze

Application

Components of the DTR Example

frames, and capture one or more still images to a file. The
RSTA program is an image analysis software, which ana-
lyzes still images for potential targets and generates anno-
tated images with outlined targets.

In the intelligence analyst module (Fig. 6(b)), still im-
ages stored in the Presto file system are captured by Cap-
ture-p, and displayed by DisplayCaptureRawp on a dis-
play unit through a ControlPanelp block, which imple-
ments VCR operations on the screen. The images are ana-
lyzed by the RSTA ima.ge analysis software, and as a result
annotated images are generated. We can also store the an-
notated images to a file by using the block UFSWriteFile-
NameRawp.

Commander The Commander views still images anno-
tated by the RSTA image analysis software. The comman-
der’s user interface provides a set of controls for selecting
an image to view from among those available.

The commander module (Fig. 6(c)) consists of three ba-
sic blocks. It can play back a stored file on screen using
DisplayRawp. Lister-p shows the user a fileldirectory list
and can be used to select an annotated still frame from the
file system using block UFSReadFileRawp.

5 Conclusions
In this paper, we have described a data-flow oriented

block based programming language suitable for distributed
multimedia programming. We have shown an explicit ex-
ample in detail to exemplify its expressiveness. We have
shown that Presto’s usability can be enhanced by provid-
ing tools that aid in developiing block based programs, spec-
ifying their user interfaces and verifying their correctness.

In this respect, we have implemented a program devel-
opment tool (PDT) that specifies the blocks and their in-
terconnection structure. It has been observed that this tool
greatly enhances the usability of Presto as a general pur-
pose distributed multimedia1 testbed. Nevertheless, specify-
ing the user interfaces of F’resto programs did not appear
to be an easy task in the PDT, and hence we developed an-
other graphical user in.terface for that purpose, called the
user interface development tool (UIDT).

We are currently developing a program analysis tool
that will perform static analysis of multimedia programs
specifiable in Presto. 1Futu.re work on Presto also includes
the enhancement of tools to incorporate Quality of Service
(QoS) specification, its translation into parameters the re-
source managers can use [16], and analysis of the system’s
ability to achieve the specified QoS.

References
[I I J. Huang, D. Kenchammana-Hosekote, J. Richardson, and

J. Srivastava, “Presro: A Prototyping Environment for Mis-
sion Critical Multimedia Applications,” in Proceedings of
IEEE Dual Use and Applications Conference, IEEE, March
1996.

45 I

(.o Intelligence Assistant I (bi Intelligence Analyst (*I Commander

Figure 6: Block-based Programming Diagram for the Distributed Target Recognition Application

[2] K. Patel, Introduction to the CM Toolkit. Berkeley Multime-
dia Research Center, 1995.

[3] J. Thompson and Gottlieb, Macromedia Director Devel-
oper’s Guide to Lingo. 1995.

[4] C . Lindblad, D. Wetherall, and D. Tennenhouse, “The
VuSystem: A Programming System for Visual Processing
of Digital Video,” in Proceedings of ACM Multimedia 94,
October 1994.

[5] D. Tennenhouse, J. Adam, D. Carver, H. Houh, M. Is-
mert, C. Lindblad, W. Stasior, D. Wetherall, D. Bacher,
and T. Chang, “The Viewstation: A Software-intensive Ap-
proach to Media Processing and Distribution,” Multimedia
Systems, vol. 3 , pp. 104-1 15, July 1995.

[6] D. Stewart, R. Volpe, and P. Khosla, “Design of Dynami-
cally Reconfigurable Real-time Software using Port-based
Objects,” Tech. Rep. CMR-RI-TR-93- 11, Dept. of ECE,
CMU, 5000, Forbes Avenue, Pittsburgh, PA 15213, July
1993.

[7] J. Huang and D.-Z. Du, “Resource management for contin-
uous multimedia applications,” in Proceedings of the 15th
Real Time Systems Symposium, IEEE, December 1994.

[8] J. Huang and P.-J. Wan, “On supporting mission critical ap-
plications,” in Proceedings on International Conference on
Multimedia Computing Systems, IEEE, June 1996.

[9] J. Huang, Y. Wang, and D. Kenchammana-Hosekote, “De-
centralized end-to-end scheduling for continuous multime-
dia,” in Proceedings of Workshop on Network and Operating
System Support for Digital Audio and Video, IEEEIACM,
April 1996.

[IO] J. Gosling, F. Yellin, and T. J. Team, The Java Programming
Language. Addison-Wesley, 1996.

[l l] J. Ousterhout, Tcl and the Tk Toolkit.
1993.

Addison-Wesley,

[121 M. Agrawal, D. Kenchammana-Hosekote, A. Pavan,
S. Bhattacharya, and N. Vaidyanathan, “High Performance
Network Services for Multimedia-Integrated Distributed
Control,” tech. rep., Honeywell Technology Center, Min-
neapolis, MN, July 1996.

[131 J. Huang, D. Kenchammana-Hosekote, and J. Wan, “Hetero-
geneous Distributed Multimedia Information Management
for the Infosphere,” tech. rep., Honeywell Technology Cen-
ter, Minneapolis, MN, January 1996.

[14] M. Agrawal, R. Harinath, J. Huang, J. Richardson (Hon-
eywell Technology Center), W. Lee, J. Srivastava, D. Su,
S. Wadhwa, add D. Wijesekera (University of Minnesota),
“Sonata: Active Views in a Distributed Object-Oriented
System,” in Sixth IEEE International Symposium on High
Pe$ormance Distributed Computing (HPDC-6) (Appeared
in Research Prototype Demonstration Session), (Portland,
Oregon), August 1997.

[151 D. Kenchammana-Hosekote and J. Srivastava, ‘WO schedul-
ing for Digital Continuous Media,” ACM Multimedia Sys-
tems Journal, vol. 5 , pp. 213-237, July 1997.

[16] D. Wijesekera and J. Srivastava, “Quality of Service Metrics
for Continuous Media,” Multimedia Tools and Applications,
vol. 3, pp. 127-1 66, September 1996.

452

