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Large sizes of continuous media files, e.g. video, require multi- 
media applications to access data From secondary and/or tertiary 
storage during execution, making the file system the bottleneck 
of overall performance. F’uthermore, such access require some ap- 
plication specific Quditv of Service (QoS) parameters be met. 
These include retrieval rate, its variation, timing drift, average 
and bursty errors, and the degree of synchronization. Unavilabii- 
ity of such QoS parameters in conventional file systems result in 
failures to guarantee QoS parameters and thereby take advantage 
of application’s tolerauces. This paper presents an experimental 
evaluation of the Presto continuous media file system (PFS), that 
has been implemented in the context of a distributed multimedia 
application development envimnment that has been prototyped. 

1 Introduction 

The Unix File System (.UF’S) [I91 has been the landmark 
achievement in file system design, and practically every 
modern tie system borrows heavily from it. 

1.1 Inadequacy of Current File Systems for Continuous Media 

While the mechanisms provided by the UFS have been 
sufficient for most applications, there are tiportant 
ciasses of appfications where it is not been so, e.g. [Zl]. 
An increasingly important &es of applications where 
UFS is not suitable are those requiring storage aud re- 
trieval of cont~nuopcs media (CM), i.e. audio, video, ani- 
mation, etc. [20]. Following are some unmet file system 
needs of continuous media, 
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l Treatment of files as a sequence of bytes by current 
file systems preclude modeling and thereby pre- 
venting optimized timely retrieval of time sensitive 

. CM data such as audio and video. Untimely jit- 
tery retrieval cause user dissatisfaction [20], and in 
conventional file systems these increase with load. 
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1.2 

l Given the high level of redundancy and tempo- 
ral autocorrel&on of continuous media, its human 
consumption is very tolerant to controlied errors. 
The system should be able to understand specifica- 
tions of acceptable tolerances, also called Qvafity 
of Service, and take advantage of them in resourca 
management. 

Design lssoes in Continuous Media Fife Systems 
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Based on the above observations, the following issues 
must be addressed in designing a continuous media file 
system: 

Plucement and Storage S~ractures: The placement 
of CM data should be such that it is capable of 
dealing with large sizes with real time retrieval 
needs that are embodied in QoS metrics. 

Sched&ng: The goal of disk/server scheduling for 
continuous media is to satisfy QoS requirements by 
meeting deadlines of periodic I/O requests genor- 
ated by some server resident CM stream manager 
with minimum buffers Ill]. 

The key to designing high performance file systems 
to support CM requires that we use information about 
(i) the inherent temporal nature of continuous media, 
and (ii) QoS oriented nature of media access, to develop 
new solutions to these problems. 

1.3 Related Work & Contribution 

The last few years have seen a growing degree of ht- 
terest in I/O issues for multimedia in general, and CM 
in particular [20, 61. The initial work in the area, c,& 
11, 5, 13, 231, focused on the principles behind continu- 
ous media storage and retrieval, and led to the develop- 
ment of the incremental retrieval modeI. Recent work, 
e.g. [lo], has developed the model more completely and 
used analytical techniques to elucidate the behavior of 
the model. A number of investigations, e.g. [3,2, 17, 91, 
have developed techniques for continuous media access, 
and have carried out their evaluation, usually by means 
of simulation. Similarly, work in the area of file place- 
ment includes [X3,4,16,10], where different approaches 
to storing continuous media data have been proposed, 
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In some cases simulation-based evaluation has been per- 
formed. 

While some good incremental retrieval models exist, 
and a number of techniques for CM storage and access 
have been developed, there is a serious dearth of ac- 
tual file system implementations which are suited for 
a broad range of multimedia applications. A number 
of efforts have focused on developing I/O storage and 
management systems for CM to fulfill the needs of spe 
cific applications, e.g. [22,4]. Conversely, given the fact 
that under low resozLrce zttiZization whether the tinder- 
lying system is cognizant of an application’s real-time 
needs or not does not matter, there have been efforts 
to use high-performance general purpose file systems to 
manage CM data, as evidenced by the Tiger-Shark file 
system [7] which has shown good performance in some 
multimedia applications. In our opinion thii approach 
suffers from two problems. First, it is not scalable since 
keeping the load low means building the system with 
very high capacity. Second, such a system will have a 
seriously unacceptable price-performance ratio. 

Overall, we believe that a continuous media file sys- 
tem mzlst use information about the inherent nature 
of continuous media in all its functions to ensure both 
high performance and a good price-performance ratio. 
Hence, it must be built on the principles of incremen- 
tal retrieval, which is emerging as the model to capture 
the inherent nature of continuous media. To our knowl- 
edge, the file systems that fit this criteria are [15, 141, 
where some principles of the incremental retrieval model 
have been used, especially in the design of the admission 
control strategy. However, one issue that is still lacking 
from any study we’ve seen is the evaluation of any file 
system from the viewpoint of QoS metrics. After all, a 
continuous media application’s performance (and possi- 
bly correctness) needs are expressed in terms of its QoS 
specification, and hence the underlying system’s perfor- 
mance must be measured in terms of how successful it 
is in attaining the specified &OS. In the multimedia net- 
working community this is today the accepted way of 
evaluating communication protocols for continuous me- 
dia. We believe that the file system community must 
do the same. 

To the best of our knowledge, our study is the first 
one to evaluate file system performance for managing 
continuous media in terms of how well the specified QoS 
is attained. We have compared the experimental behav- 
ior of the Unix file system, as instantiated in the Solaris 
2.5 operating system, with that of the Presto file system. 
The experimental data used conformed to that specified 
for motion JPEG video. Our principal findings are [12]: 

l For general file operations, i.e. non-continuous me- 
dia access, the maximum aggregate throughput ob- 
tained from PFS was about 80% more than that 
for UFS. While the throughput of either file sys- 
tem increases by increasing the size of the block 
accessed from the disk in each read (at the ex- 
pense of having larger memory buffers), the range 
in which PFS can take advantage of thii is much 
larger than that for UFS. 

l For motion JPEG data, where the mean size of a 

frame is about 18KB, where PFS outperforms UFS 
by about 25%. 

l For QoS parameters related to time drifts, PFS 
outperforms UFS by a huge margin. 

l For &OS parameters related to frame loss, the loss 
sufhxed by PFS is less than one third of that suf- 
fered by UFS. 

The structure of this paper is as follows: in section 
2 we describe the architecture of the Presto file system 
and provide details of its implementation. In section 3 
we provide an overview of the Quality of Service model 
used. Section 4 describes our experimental comparison 
of PFS and UFS for basic file operations, while section 
5 does the same for continuous media access. In section 
6 we conclude the paper. 

2 Architecture of PFS and its Implementation 

This section describes design objectives and require- 
ments of PFS, and compares it with conventional file 
systems, e.g. UFS. 

2.1 Requirements and Design Objectives 

To handle continuous media (CM) efficiently we need to 
store and retrieve large amounts of multimedia informa- 
tion with continuous playback, providing user-specified 
QoS. The CM file system should provide huger data 
unit abstractions, such as video frame and audio sam- 
ple group, unlike conventional file systems, e.g. UFS, 
which provide only a byte-oriented abstraction. A wit 
is a user-defined logical chunk of data, e.g. a frame for 
video data and a sequence of audio samples for audio 
data (Figure 1). Henceforth, the abstraction can sup- 
port CM application’s retrieval and storage needs via 
units in a CM stream. In addition, it should allow an 
application to randomly seek to a unit within a stream. 

Another design objective for the CM file system is to 
provide efficient I/O access to the disk. This objective 
is crucial for CM retrieval and storage where real-time 
continuous delivery is required and where high volume 
I/O bandwidth is required. To do so, new storage and 
access strategy should provide timely delivery to appli- 
cations via optimizing accesses, buffer management, and 
interface with the I/O scheduler. 

unll1 wllI2 unit 3 unft 4 mlt 5 
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Figure 1: Unit and Stream in PFS 

2.2 Comparison with UFS 

Conventional storage managers such as UFS were de- 
signed for non-real-time access to byte(record)-oriented 
data. They have the following drawbacks [8]: 
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l UFS provides byte-otiented abstraction while CM 
applications (such as an application that manipu- 
late video streams) prefer Imit(eg. a sequence of 
video frames)-oriented abstraction. 

a UFS is efficient in handling small size record-based 
file accesses, but is expensive for accessing larger 
files because of tree-structured index of the file sys- 
tem. Hence it is not appropriate for video and 
image data that require high volume. 

l UFS does not provide functionality for real-time 
continuous delivery of data. 

l The main buffering strategy used in UFS (i.e. 
LRU) may not be efficient in case sequential ac- 
cess is needed by CM applications. 

2.3 implementation Details 

PFS is implemented on a raw disk partition of UNIX 
so as to by pass the UNIX block buffer cache and allow 
the imposition of customized access structures (Figure 
2). 

“Fs?iyecnM- 

Figure 2: Diik Access via PFS and UFS 

2.3.1 Disk Layout 

A PFS partition is divided into one or more extents, 
and each extent consists of a number of udts. A CM 
stream is stored in an extent. Information about each 
stream is stored in a structure referred to as the inode. 
A super block is used to maintain the formatting data 
and extent map of free extents. The overview of disk 
layout is shown in Figure 3. 

2.3.2 Super Hock 

The formatting information in the super block includes: 
(1) number of extents in partition, (2) size of each extent 
in blocks, (3) size of each block in physical sectors. 

The free extents in a partition are indexed by a 
bitmap. A first fit algorithm is used to allocate a free 
extent to a stream. A command called Pformat is used 
to format the raw partition and create the super block. 
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Figure 3: Disk Layout in PFS 

2.3.3 Inodes 

There is a unique irtode assigned to each extent. Each 
inode is 128 bytes long, and includes the following fieids: 
(1) name of a stream, (2) name of extent, (3) number 
of units in the stream, (4) stream type. 

2.3.4 Extents 

An dent consists of a number of units. The unit size 
is variable. Each extent is divided into two regions. 
The first region is the index region, storing the size and 
starting address of each unit. The other region is tha 
data region storing a sequence of units, with each unit 
starting on a physical sector boundary. 

2.4 PFS Application Programming Interfaces 

PFS has a iayered programming interface. In this pa- 
per, we discuss only the the stream layer interface. Tha 
stream layer interface is similar to the one in UFS, Soma 
of the major functions in this API are as follows: 

l Pcreate(stream-name): create a stream. 

l Popen(stream-name): open a stream to read or 
write; the stream’s read/write position in set to 
the beginning. 

l Pstart(strenm-name, rate): a (non-blocking) call 
that informs the stream server that it should start 
providing data from the stream at the specified 
rate. 

l Pclose(stream-name): close a stream. 

l Pread(stream-name, num-units): read the sped- 
fied number of units from a stream. 

l Pwrite(stream-name, num-units): write the spec- 
ified number of units to a stream. 

l Pseek( stream-name, num-pas): move tha 
. stream’s read/write position forward by num-pas 

positions (backward if negative). 
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3 QoS Model for Continuous Media 

The QoS metrics used to evaluate PFS and UFS, called 
the continuity parameters for CM streams in [24], are 
reviewed in this section. 

Continuity of a CM stream is metrized by three com- 
ponents; namely rate, drift and content. For the pur- 
poses of describing these metrics, we envision a CM 
stream as a flow of frames. The ideal rate of flow and the 
maximum permissible deviation from it constitute our 
rate parameters. Given the ideal rate and the beginning 
time of a CM stream, there is an ideal time for a given 
frame to arrive/ be displayed. Given the envisioned 
&rid-like nature of CM ‘streams, the appearance time of 
a given frame may deviate from this ideal. Our dr#t 
parameters specify aggregate and consecutive non-zero 
drifts from these ideals, over a given number of consecu- 
tive frames in a stream. For eg., first four frames of two 
example streams with their expected and actual times 
of appearance, are shown in Fig. 5. In the first exam- 
ple stream, the drifts are respectively 0.0, 0.8, 0.2 and 
0.2 seconds; and accordingly it has an aggregate drift 
of 1.2 seconds per 4 time slots, and a non-zero consecu- 
tive drift of 1.2 seconds. In the second example stream 
the largest consecutive non-zero drift is 0.2 seconds and 
the aggregate drift is 0.3 seconds per 4 time slots. The 
reason for a lower consecutive drift in stream 2 is that 
the unit drifts in it are more spread out than those in 
stream 1. 

In addition to timing and rate, ideal contents of a CM 
stream are specified by the ideal contents of each frame. 
Due to loss, delivery or resource over-load problems, 
appearance of frames may deviate from this ideal, and 
consequently lead to discontinuity. Our content metric 
is designed to measure the average and bursty devia- 
tion from the ideal specification. A loss or repetition 
of a frame is considered a wit loss in a CM stream. 
For a more precise definition envision the flow of CM 
frames as a train of slots with successive slot numbers, 
as given in Fig 4. Some slots may be filled with con- 
tents of frames. We define a unit loss only for slots 
that have some occupying contents, Suppose s(lc) is the 
media frame at slot s(i) of stream s. Suppose the imme- 
diately previous non empty slot to s(i) is s(i -Z), where 
1 > 0, and it is occupied by contents of frame F(j). In 
case there are no skips, repeats or misses, if slot s(i) is 
occupied by media frame F(lc), then slot s(i - 1) should 
be occupied by contents of frame F(k - 1). Hence the 
unit loss incurred at slot s(i-Z) due to skips and repeats 
is ]]k-i-j]]. The unit loss due to missing frames at slot 
s(i) is (I - l), precisely because there are (Z - 1) empty 
slots in between slots s(i) and s(i - I). Hence the max- 
imum of unit losses due to skips, repeats and misses at 
slot s(i), say U%(i), is max(]]Zc - 1 - j]], I - 1). Conse- 
quently, we define max{]]k - I - j]], Z - I} to be the unit 
loss at slot s(i). In order to measure the unit loss at 
the beginning of a stream, we assume that every stream 
has a hypothetical slot ~(-1) with a hypothetical frame 
F[-1). 

The aggregate number of such unit losses is the ag- 
gregate loss of a CM stream, while the largest consec- 
utive non-zero unit loss is its consecutive loss. In the 
example streams of Fig. 5, stream 1 has an aggregate 
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Figure 4: Unit Loss of a Stream 

loss of 2/4 and a consecutive loss of 2, while stream 2 
has an aggregate loss of 2/4 and a consecutive loss of 1. 
The reason for the lower consecutive loss in stream 2 is 
that its losses are more spread-out than those of stream 
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Figure 5: Streams Used to Explain Continuity Param- 
eters 

4 Comparison of PFS and UFS on Standard File Operations 

In this section, we demonstrate the advantages of PFS 
over UFS based on experiments that use standard file 
operations- The experiments were carried out on a Sun 
Ultra Sparcstation with a 4G3 SCSI disk. The focus of 
our experiments was to verify that for standard file op- 
erations the performance of PFS is comparable to that 
of UFS. 

4.1 Evaluation Metrics 

The metrics we consider in this section are disk through- 
put, buffer requirement and service cycle length. 

1. Disk Throughput : Disk throughput is measured 
by the data rate of a single read operation, and its 
value is obtained by computing the ratio of the size 
of an average read to the time taken for it. 

2. Buffer Requirement: Buffer Requirement is 
measured by the I/O buffer size. The data in a 
single read is put into I/O buffers. We call the 
amount of data in a single read the buffer size. 

3. Response Time and Service Cycle: Response 
time is the time between a read request’s initia- 
tion and its completion. When there is concurrent 
stream access in the system, the I/O schedule is di- 
vided into service cycles. In each cycle, the appro- 
priate amount of data is fetched for each stream, 
and its length provides a lower bound on the re- 
sponse time. 
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Since we are interested in the performance of the disk When the unit size is small (below 8X(B), UFS is 
system, it was important to ensure that the file reads faster than PFS. When the unit size is above lOKB, 
were not serviced from the file cache. Hence, we used PFS is faster than UPS. In a CM Stream, we store a 
different flies in each test, and chose to use each file only frame of CM data as a unit. UFS is optimal for small 
once to bypass the effects of system I/O buffering. To frames while PFS is optimal for large frames. For 640 
eliminate the effects of random fluctuations, we repeat by 480 JPEG frames, where the size of the compressed 
each operation several times and use the average value frame is about 18KB, PFS has a higher data rate than 
or should it be minimum value. UFS. 

From Fig.6, we determine two ways to improve the 
throughout of PFS. One is to group a number of frames 
into a unit. The other is to read out more units in a 
single read, called group n~od. The data rate increases 
with group size. 

4.2 Experiment I : The Effect of Unit Size on Disk Through- 

Put 

4.2.1 Experimental Design 

In both PFS and UFS, the relationship between buffer 
size(b) and data access time@) is: 

t = (l/T,)b i- tcl II> 

T = r*/(l + r,t,/b) W 

Here, t is the access time, T is data rate, buffer size(b) is 
the data size in a single read, r, is the possible maximum 
data rate, and t, is the constant overhead for a single 
read. In Unix, r. depends solely on the buffer size. In 
PFS, r0 depends on both the unit size and the number 
of units in a single read. 

The iirst experiment is designed to verify this rela- 
tionship. For PFS experiments, in a single run, we fix 
number of units fetched in a single read, vary the unit 
size and measure the access time. We repeat this for 
different numbers of units in a single read. In UFS, we 
regard the whole buffer as a unit and carry out the same 
experiment. 

4.2.2 Experimental Results 

Fig.6 shows the relationship between the data rate and 
the unit size. The graph shows that PFS has a higher 
maximum possible data rate. 

I 
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Figure 6: Effect of Unit Size on Data Bate 

In PFS, data rate increases with unit size, and the 
more number of units per read, the higher the achievable 
data rate. In UFS, our experimental observations are 
that when the buffer size is smaller than lOKB, the data 
rate increases with the buffer size. When the buffer size 
is larger than 1OKB, the data rate remains constant. 
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4.3 Experiment 2: Effect of Concurrent Streams on 8uffet . 
Size 

4.3.1 Experimental Design 

When there are requests for multiple streams from PFS, 
they compete for I/O bandwidth and other system re- 
sources, and therefore require larger buffers to handle 
the context switch overhead. Hence, to maintain a fixed 
data rate we need a longer service cycle. 

In this experiment, we assume that all CM streams 
are JPEG Streams with frame size 18KB and data rate 
to be 30 frames per second G.e.540 KB/s). In PFS, each 
frame is stored in a unit. In a service cycle, the same 
number of units are read out for each stream. The ex- 
periment is as follows: First, we fix the number of con- 
current streams and perform a group read. The group 
size begins with one unit and is gradually increased WI- 
til the required data rate is achieved. We repeat this 
for increasing number of concurrent streams, until the 
system is saturated, and thus unable to satisfy the rc- 
quired data rate. For UFS, we consider frame size as 
unit size and carry out the same experiment. 

4.3.2 Experimental Results 

Fig.7 shows the relationship between the number of con- 
current streams and the buffer size for each stream. 

UFS can support up to 16 concurrent JPEG streams, 
each at the rate of 54OKBjs. When the number of con- 
current streams is more than 16, the required data rate 
is not satisfied. The buffer size of each stream remains 
the same as the frame size while the number of streams 
goes from 1 to 16. Under the same conditions, PFS can 
support up to 23 concurrent JPEG streams, while the 
buffer size of each stream monotonically increases with 
the number of streams. 

In PFS, when there are less than three concurrent 
streams, the buffer is the same as frame size. As more 
concurrent streams enter, we must increase the buffer 
size and $0 group read to meet the required consump- 
tion rate. 

4.4 Experiment 3 : Effect of Concurrent Streams on Servke 
Cycle Length 

4.4.1 Experimental Design 

This experiment is designed to determine the effect of 
concurrent CM streams on the length of the service cy- 
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Figure 7: Effect of Number Concurrent Streams on 
Buffer Size 

cle. This experiment can be performed in the same way 
as the previous one. 

4.4.2 Experimental Results 

Fig8 shows the relationship between the number of con- 
current streams, and the length of the service cycle. 

I I 

Figure 8: Effect of # of Concurrent Streams on Cycle 
Length 

In UFS, as the number of concurrent streams in- 
creases, the length of the service cycle increases linearly. 
In PFS, when there is only one stream, the length of 
the service cycle is very small. As the number of con- 
current streams increases, the length of the service cycle 
increases faster than that in UFS. This shows that the 
overhead of resource contention of concurrent streams 
in PFS is more than that in UFS. 

This relationship between the number of concurrent 
streams and the length of service cycle is similar to 
the relationship between the number concurrent streams 
and the buffer size. We can deduce it from equation 1: 

T > (sroto/(ro - sR) (3) 
B > r,Rt,/(r, - sR) (4) 

S maz = ro,JR (5) 

5.1.2 History Based Stream Scheduling 

Consider a example QoS specification, where the accept- 
able drift profile is {lOOms//30, 2Oms) and the accept- 
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able rate profile is (30, 100). At any point in time, the 

Here, T is the length of the service cycle, B is the 
buffer sine, S,,,,, is the maximum number of concurrent 
streams, s is the number of concurrent streams, and R is 
the consumption rate. For a given number of streams, . 
the length of the service cycle for PFS is longer than 
that for UFS, as shown in figure 8. This happens be- 
cause PFS’s approach to handling higher workload is to 
expand the length of the cycle, and thereby increase the 
eflkiency of the I/O system by reducing context switch 
overhead. This is not without its drawback, since a 
larger buffer is required by PFS, compared to UFS, for 
a given workload (as shown in figure 7). However, as 
we can observe, this strategy is better overall since it 
allows PFS to handle a larger range of workload, i.e. 23 
streams, as compared to a maximum of 16 streams for 
UFS. 

5 Comparison of PFS and UFS on QoS Metrics 

The QoS metrics we measured are unit, aggregate and 
consecutive drift factors and loss factors, as described 
in Section 3. 

5.1 Experiment 4 : Measuring Drift Factors 

This experiment is designed to measure the effect of 
UFS and PFS approaches to file management on drift 
profiles of streams, which specify the average and bursty 
deviation of schedules for frames from ideal expected 
points in time. We measured the difference between the 
ideal rendition time and the actual rendition time as a 
unit granule drift. The aggregate drift is the sum of unit 
granule drifts over some interval, and the consecutive 
drift is the sum of consecutive non zero drifts. 

5.1.1 PFS’s Suitability for Real-Time Applications 

In table 1, an example history of stream scheduling 
based on timing metrics (drift profile) using PFS is 
shown. This experiment was performed for a single 
stream. Most UGD’s are zero, and only in the time slots 
9, 10, and 14 frames have time differences 5, 5, and 6, 
respectively. Hence the resulting ADF is 5 + 5 + 6 = 16 
per 15 granules, and the largest consecutive drift is 5 
+5 = 10, between s(8) and ~(10). Hence, the CDF is 
10. 

However, for UFS (m table l), the drift statistics 
are quite different, i.e. most UGD’s have larger times, 
and as a result the ADF (1125) and the CDF (1014) 
are much larger than those measured for PFS. Conse- 
quently, UFS is not well suited to support perceivable 
continuity of CM streams which are sensitive to drifts. 
Through this experiment, we can say that PFS preserves 
more faithfully the characteristics of real-time applica- 
tions than UFS does (in Figure 9). Also, when we 
increase the number of concurrent streams (1 to 20), 
the ADF values are increased. 
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Table 1: Media GranuIe Renditions in PFS and UFS 

Figure 9: Unit Sequencing Drift Factors 

Figure 10: Unit Sequencing Loss Factors 

time at which the next.frame (granule) is to be sched- 
uled is restricted by the history (at this point in tie) of 
unit granule drifts 1241. To satisfy the drift protie, the 
next timing interval of rendition is given by (equation 
6): 

ITi + $ - min {&,D(i)j,Z + i +min (&,O(~)j] 
(61 

where, D(i) is the maximum drift slack available & 
s((ri + I)), and satisfies D(i) > 0. 

At a rate of 33 frames/set, the ideaI time of rendi- 
tion for 16th frame is 495 ms. According to ( 6), the 
rendition interval for the next slot should be within the 
interval [495 - 10,495 -!- 101 = [485,505]. Such informa- 
tion can be used to determine how to assign priorities 
to streams at this point in time. We call such class of 

scheduling policies as htitoy-based schedzrting policies, 
as they take the history of stream progress into account 
in making their scheduling decisions. Our current in- 
vestigation is experimenting with such policies. 

5.2 Experiment 5: Loss Factors 

This experiment is to measure the effect of loss fae- 
tors which specify aggregate and consecutive frame 10~s 
ratios. We measured the difference between the ideal 
frame amid time and the actual frame appenranca 
time. Using these values, we calculate the gap between 
the ideal media granule and the presented media gran- 
ule as unit sequencing loss. We set a threshold granule 
period of time slot, and if the gap is larger than the 
threshold value, we assume the frame is lost. If the gnp 
is between 0 and the threshold, we consider the frame 
as being delayed. Otherwise, it arrives on time. The ag 
gregate media granule loss is the sum of unit sequencing 
losses and the consecutive media granule loss is the sum 
of non zero consecutive unit sequencing losses. 

In the current experiment to measure the effects of 
content b&ed QoS metrics [loss factors: such as USL, 
ALF, and CLF), we observe that both PFS and UPS 
provide fairly uniform and stable results (in figure 10). 
As we see in experiment 4, in measuring drift factors for 
single and/or multiple stream(s), we get better though- 
put results (Iess loss) in PFS than in UFS. Comparing 
single stream to multiple streams, the former situation 
leads to lower loss than the latter for both PFS and 
UFS. 

6 Conclusions 

Given the very large size of continuous media data, e,g. 
video, most multimedia applications must access data 
from secondary and/or tertiary storage during execu- 
tion. This makes the performance of continuous me- 
dia files systems criticai to overall system performance. 
Additionally, access to continuous media requires that 
some Quality of Service (&OS) parameters (specified by 
the application) be met. These include specification of 
retrieval rate and its variation, allowable timing drift, 
acceptable average and bursty errors, and degree of syn- 
chronization. Conventional file systems do nut have any 
notion of &OS, and thus fail on two counts. First, they 
are unable to provide any guarantees regarding &OS, 
and second they are not able to take advantage of the 
application’s tolerance (specified by the QoS parame- 
ters) in optimizing the file system performance. In this 
paper we present results from the experimental evalu- 



ation of a continuous media file system, called Presto 
File System (PFS), which has been implemented in the 
context of a distributed multimedia application devel- 
opment environment that we are prototyping. Our on- 
going work’is developing storage and access mechanisms 
that take advantage of QoS specifications to optimize 
system performance. 
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