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Abstract

Large sizes of continuous media files, e.g. video, require multi-
media applications to access data from secondary and/or tertiary
storage during execution, making the file system the bottleneck
of overall performance. Futhermore, such access require some ap-
plication specific Quality of Service (QoS) parameters be met.
These include retrieval rate, its variation, fiming drift, average
and bursty errors, and the degree of synchronization. Unavilabil-
ity of such QoS parameters in conventional file systems result in
failures to guarantee QoS parameters and thereby take advantage
of application’s tolerances. This paper presents an experimental
evaluation of the Presto continnous media file system (PFS), that
has been implemented in the context of a distributed multimedia
application development eavironment that has been prototyped.

1 [Introduction

The Unix File System (UFS) [19] has been the landmark
achievement in file system design, and practically every
modern file system borrows heavily from it.

1.1 Inadequacy of Current File Systems for Continuous Media

While the mechanisms provided by the UFS have been
sufficient for most applications, there are important
classes of applications where it is not been so, e.g. (21}.
An increasingly important class of applications where
UFS is not suitable are those requiring storage and re-
trieval of continuous medie (CM), i.e. audio, video, ani-
mation, etc. [20]. Following are some unmet file system
needs of continuous media,

e Treatment of files as 2 sequence of bytes by current
file systems preclude modeling and thereby pre-
venting optimized timely retrieval of time sensitive
CM data such as audio and video. Untimely jit-
tery retrieval cause user dissatisfaction [20], and in
conventional file systems these increase with load.
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C-0130 to Honeywel Inc, via subcontract number B09030541/AF to
the University of Minnesota.
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e Given the high level of redundancy and tempo-
ral autocorrelation of continuous media, its human
consumption is very tolerant to controlled errors.
The system should be able to understand specifica-
tions of acceptable tolerances, also called Quality
of Service, and take advantage of them in resourca
management.

1.2 Design Issues in Continuous Media Fife Systems

Based on the above cobservations, the following issues
must be addressed in designing a continuous media file
system:

o Placement and Storage Structures: The placement
of CM data should be such that it is capable of
dealing with large sizes with real time retrieval
needs that are embodied in QoS metrics.

o Secheduling: The goal of disk/server scheduling for
continuous media is o satisfy QoS requirements by
meeting deadlines of periedic I/O requests gener-
ated by some server resident CM stream manager
with minimum buffers {11].

The key to designing high performance file systems
to support CM requires that we use information about
(i) the inherent temporal nature of continuous media,
and (i) QoS oriented nature of media access, to develop
new solutions to these problems.

1.3 Related Work & Contribution

The last few years have seen a growing degree of in-
terest in I/O issues for multimedia in general, and CM
in particular [20, 6). The initial work in the ares, ¢.g.
[1, 5, 13, 23], focused on the principles behind continu-
ous media storage and retrieval, and led to the develop-
ment of the incremental retrieval model. Recent work,
e.g. {10], has developed the model more completely and
used analytical techniques $o elucidate the behavior of
the model. A number of investigations, e.g. {3, 2, 17, 9],
have developed techniques for continuous media aceess,
and have carried out their evaluation, usually by means
of simulation. Similarly, work in the area of file place-
ment includes {18, 4, 16, 10}, where different approaches
to storing continuous media data have been proposed.
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In some cases simulation-based evaluation has been per-
formed.

While some good incremental retrieval models exist,
and a number of techniques for CM storage and access
have been developed, there is a serious dearth of ac-
tual file system implementations which are suited for
a broad range of multimedia applications. A number
of efforts have focused on developing I/O storage and
management systems for CM to fulfill the needs of spe-
cific applications, e.g. [22, 4]. Conversely, given the fact
that under low resource utilization whether the under-
lying system is cognizant of an application’s real-time
needs or not does not maiter, there have been efforts
to use high-performance general purpose file systems to
manage CM data, as evidenced by the Tiger-Shark file
system [7] which has shown good performance in some
multimedia applications. In our opinion this approach
suffers from two problems. First, it is not scalable since
keeping the load low means building the system with
very high capacity. Second, such a system will have a
seriously unacceptable price-performance ratio.

Overall, we believe that a continuous media file sys-
tem must use information about the inherent nature
of continuous media in all its functions to ensure both
high performance and a good price-performance ratio.
Hence, it must be built on the principles of incremen-
tal retrieval, which is emerging as the model to capture
the inherent nature of continuous media. To our knowl-
edge, the file systems that fit this criteria are [15, 14],
where some principles of the incremental retrieval model
have been used, especially in the design of the admission
control strategy. However, one issue that is still lacking
from any study we’ve seen is the evaluation of any file
system from the viewpoint of QoS metrics. After all, a
continuous media application’s performance (and possi-
bly correctness) needs are expressed in terms of its QoS
specification, and hence the underlying system’s perfor-
mance must be measured in terms of how successful it
is in attaining the specified QoS. In the multimedia net-
working community this is today the accepted way of
evaluating communication protocols for continuous me-
dia. We believe that the file system community must
do the same.

To the best of our knowledge, our study is the first
one to evaluate file system performance for managing
continuous media in terms of how well the specified QoS
is attained. We have compared the experimental behav-
ior of the Unix file system, as instantiated in the Solaris
2.5 operating system, with that of the Presto file system.
The experimental data used conformed to that specified
for motion JPEG video. Our principal findings are [12]:

¢ For general file operations, i.e. non-continuous me-
dia access, the maximum aggregate throughput ob-
tained from PFS was about 80% more than that
for UFS. While the throughput of either file sys-
tem increases by increasing the size of the block
accessed from the disk in each read (at the ex-
pense of having larger memory buffers), the range
in which PFS can take advantage of this is much
larger than that for UFS.

¢ For motion JPEG data, where the mean size of a
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frame is about 18KB, where PFS outperforms UFS
by about 25%.

e For QoS parameters related to time drifts, PFS
outperforms UFS by a huge margin.

¢ For QoS parameters related to frame loss, the loss
suffered by PFS is less than one third of that suf-
fered by UFS.

The structure of this paper is as follows: in section
2 we describe the architecture of the Presto file system
and provide details of its implementation. In section 3
we provide an overview of the Quality of Service model
used. Section 4 describes our experimental comparison
of PFS and UFS for basic file operations, while section
5 does the same for continuous media access. In section
6 we conclude the paper.

2 Architecture of PFS and its Implementation

This section describes design objectives and require-
ments of PFS, and compares it with conventional file
systems, e.g. UFS.

2.1 Requirements and Design Objectives

To handle continuous media (CM) efficiently we need to
store and retrieve large amounts of multimedia informa-
tion with continuous playback, providing user-specified
QoS. The CM file system should provide larger data
unit abstractions, such as video frame and audio sam-
ple group, unlike conventional file systems, e.g. UFS,
which provide only a byte-oriented abstraction. A unit
is a user-defined logical chunk of data, e.g. a frame for
video data and a sequence of audio samples for audio
data (Figure 1). Henceforth, the abstraction can sup-
port CM application’s retrieval and storage needs via
units in a CM stream. In addition, it should allow an
application to randomly seek to a unit within a stream.

Another design objective for the CM file system is to
provide efficient I/O access to the disk. This objective
is crucial for CM retrieval and storage where real-time
continuous delivery is required and where high volume
1/0 bandwidth is required. To do so, new storage and
access strategy should provide timely delivery to appli-
cations via optimizing accesses, buffer management, and
interface with the I/O scheduler.

unit 1 unit2 unlt3 unitq  units
video frame adio im vidofeame | ...,
siream

Figure 1: Unit and Stream in PFS

2.2 Comparison with UFS

Conventional storage managers such as UFS were de-
signed for non-real-time access to byte(record)-oriented
data. They have the following drawbacks [8]:




i

o UFS provides byte-oriented abstraction while CM
applications (such as an application that manipu-
late video streams) prefer unit{eg. @ sequence of
video frames)-oriented abstraction.

o UFS is efficient in handling small size record-based
file accesses, but is expensive for accessing larger
files because of tree-structured index of the file sys-
tem. Hence it is not appropriate for video and
image data that require high volume.

e UFS does not provide functionality for real-time
continuous delivery of data.

o The main buffering strategy used in UFS (ie.
LRU) may not be efficient in case sequential ac-
cess is needed by CM applications.

2.3 Implementation Details

PFS is implemented on a raw disk pariition of UNIX
50 as to by pass the UNIX block buffer cache and allow
the imposition of customized access structures (Figure
2).

UFS Systeen Call interface
o e
urs
PFS Sysiam Caketactace UFS Block Bufter Cache
L
PF3 Pustition UFS Partition
SCSlinterface to Disk

Figure 2: Disk Access via PFS and UFS

2.3.1 Disk Layout

A PFS partition is divided into one or more extents,
and each extent consists of a number of units. A CM
stream is stored in an extent. Information about each
stream is stored in a structure referred to as the inode.
A super black is used to maintain the formatting data
and extent map of free extents. The overview of disk
layout is shown in Figure 3.

2.3.2 Super Block

The formatting information in the super block includes:
(1) number of extents in partition, (2) size of each extent
in blocks, (3) size of each block in physical sectors.
The free extents in a partition are indexed by a
bitmap. A first fit algorithm is used to allocate a free
extent to a stream. A command called Pformat is used
to format the raw partition and create the super block.
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Figure 3: Disk Layout in PFS
2.3.3 Inodes

There is 2 unique inode assigned to each extent. Each
inode is 128 bytes long, and includes the following fields:
(1) name of a stream, {2) name of extent, {8) number
of units in the stream, (4) stream type.

2.3.4 Extents

An eztent consists of 2 number of units. The unit size
is variable. Each extent is divided into two regions.
The first region is the index region, storing the size and
starting address of each unit. The other region is the
data region storing a sequence of units, with each unit
starting on a physical sector boundary.

2.4 PFS Application Programming Interfaces

PFS has a layered programming interface. In this pa-
per, we discuss only the the stream layer interface. Tha
stream layer interface is similar to the one in UFS. Some
of the major functions in this API are as follows:

e Pcreate(stream-name): create a stream.

o Popen(stream-name): open a stream to read or
write; the stream’s read/write position is set to
the beginning.

o Pstart(stream-name, rate): a (non-blocking) call
that informs the stream server that it should start
providing data from the stream at the specified
rafe.

+ Pclose(stream-name): close a stream.

o Pread(siream-name, num-units): read the speci-
fied number of units from a stream.

o Pwrite(stream-name, num-units): write the spec-
ified number of units to a stream.

o Pseck({stream-name, num-pos): move the
stream’s read/write position forward by num-pos
positions (backward if negative).
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3 QoS Mode! for Continuous Media

The QoS metrics used to evaluate PFS and UFS, called
the continuity parameters for CM streams in [24], are
reviewed in this section.

Continuity of a CM stream is metrized by three com-
ponents; namely rate, drift and confent. For the pur-
poses of describing these metrics, we envision a CM
stream as a flow of frames. The ideal rate of flow and the
maximum permissible deviation from it constitute our
rate parameters. Given the ideal rate and the beginning
time of a CM stream, there is an ideal time for a given
frame to arrive/ be displayed. Given the envisioned
fluid-like nature of CM streams, the appearance time of
a given frame may deviate from this ideal. Our drift
parameters specify aggregate and consecutive non-zero
drifts from these ideals, over a given number of consecu-
tive frames in a stream. For eg., first four frames of two
example streams with their expected and actual times
of appearance, are shown in Fig. 5. In the first exam-
ple stream, the drifts are respectively 0.0, 0.8, 0.2 and
0.2 seconds; and accordingly it has an aggregate drift
of 1.2 seconds per 4 time slots, and a non-zero consecu-
tive drift of 1.2 seconds. In the second example stream
the largest consecutive non-zero drift is 0.2 seconds and
the aggregate drift is 0.3 seconds per 4 time slots. The
reason for a lower consecutive drift in stream 2 is that
the unit drifts in it are more spread out than those in
stream 1,

In addition to timing and rate, ideal contents of a CM
stream are specified by the ideal contents of each frame.
Due to loss, delivery or resource over-load problems,
appearance of frames may deviate from this ideal, and
consequently lead to discontinuity. Our content metric
is designed to measure the average and bursty devia-
tion from the ideal specification. A loss or repetition
of a frame is considered a unit loss in a CM stream.
For a more precise definition envision the flow of CM
frames as a train of slots with successive slot numbers,
as given in Fig 4. Some slots may be filled with con-
tents of frames. We define a unit loss only for slots
that have some occupying contents, Suppose s(k) is the
media frame at slot s(%) of stream s. Suppose the imme-
diately previous non empty slot to s(z) is s( —1), where
I > 0, and it is occupied by contents of frame F(j}. In
case there are no skips, repeats or misses, if slot s(%) is
occupied by media frame F(k), then slot s(i —I) should
be occupied by contents of frame F(k —[). Hence the
unit Joss incurred at slot s{(i—1) due to skips and repeats
is ||k —I—j]|. The unit loss due to missing frames at slot
s(2) is (I — 1), precisely because there are (I — 1) empty
slots in between slots s(Z) and s(i —I). Hence the max-
imum of unit losses due to skips, repeats and misses at
slot s(z), say USL(3), is max{||k— — j]|,! —1}. Conse-
quently, we define max{||k— I — j||,I — 1} to be the unit
loss at slot s(#). In order to measure the unit loss at
the beginning of a stream, we assume that every stream
has a hypothetical slot s{—1) with a hypothetical frame
F(-1).

The aggregate number of such unit losses is the ag-
gregate loss of a CM stream, while the largest consec-
utive non-zero unit loss is its consecutive loss. In the
example streams of Fig. 5, stream 1 has an aggregate

Slot (G- missing frames for (1-1) slots Slots(@)
frame missing missing

— should have frame F(k-1)

Figure 4: Unit Loss of a Stream

loss of 2/4 and a consecutive loss of 2, while stream 2
has an aggregate loss of 2/4 and a consecutive loss of 1.
The reason for the lower consecutive loss in stream 2 is
that its losses are more spread-out than those of stream
1 :
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Figure 5: Streams Used to Explain Continuity Param-
eters

4 Comparison of PFS and UFS on Standard File Operations

In this section, we demonstrate the advantages of PFS
over UFS based on experiments that use standard file
operations. The experiments were carried out on a Sun
Ultra Sparcstation with a 4GB SGSI disk. The focus of
our experiments was fo verify that for standard file op-
erations the performance of PFS is comparable to that
of UFS.

4.1 Evaluation Metrics

The metrics we consider in this section are disk through-
put, buffer requirement and service cycle length.

1. Disk Throughput : Disk throughput is measured
by the data rate of a single read operation, and its
value is obtained by computing the ratio of the size
of an average read to the time taken for it.

2. Buffer Requirement: Buffer Requirement is
measured by the I/O buffer size. The data in a
single read is put into I/O buffers. We call the
amount of data in a single read the buffer size.

3. Response Time and Service Cycle: Response
time is the time between a read request’s initia-
tion and its completion. When there is concurrent
stream access in the system, the I/O schedule is di-
vided into service cycles. In each cycle, the appre-
priate amount of data is fetched for each stream,
and its length provides a lower bound on the re-
sponse time.
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Since we are interested in the performance of the disk
system, it was important to ensure that the file reads
were not serviced from the file cache. Hence, we used
different files in each test, and chose to use each file only
once to bypass the effects of system I/O buffering. To
eliminate the effects of random flucfuations, we repeat
each operation several times and use the average value
or should it be minimum value.

4.2 Experiment 1 : The Effect of Unit Size on Disk Through-
put

4.2.1 Experimental Design

TEEEs =

In both PFS and UFS, the relationship between buffer
size(b) and data access time(t) is:

¢ = (1)ro)b+1o o)

7 =71/ (1 + 7ol D) (2)

Here, ¢ is the access time, 7 is data rate, buffer size(b) is
the data size in a single read, 1, is the possible maximum
data rate, and t, is the constant overhead for a single
read. In Unix, r, depends solely on the buffer size. In
PFS, 1, depends on both the unit size and the number
of units in a single read.

The first experiment is designed to verify this rela-
tionship. For PFS experiments, in a single run, we fix
number of units fetched in a single read, vary the unit
size and measure the access time. We repeat this for
different numbers of units in a single read. In UFS, we
regard the whole buffer as a unit and carry out the same
experiment.

4.2.2 Experimental Results

Fig.6 shows the relationship between the data rate and
the unit size. The graph shows that PFS has a higher
maximum possible data rate.

E¥tact of Unit Size over Osta Aals
T

20

T .
1 unt/mad. -
4indshesd —_—

3B 1n2eread g "B
a5 size »uflesdize -

15E

Oala Rate (M4}
s

Brrsize )
Figure 6: Effect of Unit Size on Data Rate

In PFS, data rate increases with unit size, and the
more number of units per read, the higher the achievable
data rate. In UFS, our experimenfal observations are
that when the buffer size is smaller than 10KB, the data
rate increases with the buffer size. When the buffer size
is larger than 10KB, the data rate remains constant.
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When the unit size is small (below 8KB), UFS is
faster than PFS. When the unit size is above 10KB,
PFS is faster than UFS. In a CM Stream, we store a
frame of CM data as a unit. UFS is optimal for small
frames while PFS is optimal for large frames. For 640
by 480 JPEG frames, where the size of the compressed
frame is about 18KB, PFS has a higher data rate than
UFS.

From Fig.6, we determine two ways to improve the
throughout of PFS. One is to group a number of frames
into a unit. The other is to read cut more units in a
single read, called group read. The data rate increases
with group size.

4.3 Experiment 2: Effect of Concurrent Streams on Buffer
Size

4.3.1 Experimental Design

When there are requests for multiple streams from PFS,
they compete for I/0 bandwidth and other system re-
sources, and therefore require larger buffers to handle
the context switch overhead. Hence, to maintain a fixed
data rate we need a longer service cycle.

In this experiment, we assume that all CM streams
are JPEG Streams with frame size 18KB and data rate
to be 30 frames per second (i.e.540 KB/s). In PFS, each
frame is stored in a unit. In a service cycle, the same
pumber of units are read out for each stream. The ex-
periment is as follows: First, we fix the number of con-
current streams and perform a group read. The group
size begins with one unit and is gradually increased un-
til the required data rate is achieved. We repeat this
for increasing number of concurrent streams, until the
system is saturated, and thus unable to satisfy the re-
quired data rate. For UFS, we consider frame size as
unit size and carry out the same experiment.

4,3.2 Experimental Results

Fig.7 shows the relationship between the number of con-
current streams and the buffer size for each stream.

UFS can support up to 16 concurrent JPEG streams,
each at the rate of 540KB/s. When the number of con-
current streams is more than 16, the required data rate
is not satisfied. The buffer size of each stream remains
the same as the frame size while the number of streams
goes from 1 to 16. Under the same conditions, PFS can
support up to 23 concurrent JPEG streams, while the
buffer size of each stream monotonically increases with
the number of streams.

In PFS, when there are less than three concurrent
streams, the buffer is the same as frame size. As more
concurrent streams enter, we must increase the buffer
size and do group read to meet the required consump-
tion rate.

4.4 Experiment 3 : Effect of Cancurrent Streams on Service
Cycle Length
4.4.1 Experimental Design

This experiment is designed to determine the effect of
concurrent CM streams on the length of the servica cy-

ST TY S rops
R ,’.;Féf;ﬁ;é{:%ﬁ PR

(2

sk, " TN ML T ok B e s s P - - .
AL o SRR RO, Y A B RS R AR BN

R



200 Effect of # Concurment Strsams over Buffer Sze
T T T T

wnitsize = 18KB, i Tale w SLOKB/s0c -—

Gt 028 = 16K, Conmeren e o SAOKG S0 (UFS}

Bufter Size (XBYStream

20 F-1

Figure 7: Effect of Number Concurrent Sireams on
Buffer Size

cle. This experiment can be performed in the same way
as the previous one.
4.4.2 Experimental Results

Fig.8 shows the relationship between the number of con-
current streams, and the length of the service cycle.

. Eflact of # Sweams ovar Cycle Length
T T T
ize w 18KB, ing data rate  S40KB/sec -—
ize = 18KB, rats = S4O0KB/sec -+
350 b

Cyela Langeh (n ma)
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Figure 8: Effect of # of Concurrent Streams on Cycle
Length

In UFS, as the number of concurrent streams in-
creases, the length of the service cycle increases linearly.
In PFS, when there is only one stream, the length of
the service cycle is very small. As the number of con-
current streams increases, the length of the service cycle
increases faster than that in UFS. This shows that the
overhead of resource contention of concurrent streams
in PFS is more than that in UFS.

This relationship between the number of concurrent
streams and the length of service cycle is similar to
the relationship between the number concurrent streams
and the buffer size. We can deduce it from equation 1:

T > (sroto/(ro — sR) 3)
B > r,Rt,/(r, — sR) 4)
Smaz =7To/R (5)
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Here, T is the length of the service cycle, B is the
buffer size, Spaz is the maximum number of concurrent
streams, s is the number of concurrent streams, and R is
the consumption rate. For a given number of streams, -
the length of the service cycle for PFS is longer than
that for UFS, as shown in figure 8. This happens be-
cause PFS’s approach to handling higher workload is to
expand the length of the cycle, and thereby increase the
efficiency of the I/O system by reducing context switch
overhead. This is not without its drawback, since a
larger buffer is required by PFS, compared to UFS, for
a given workload (as shown in figure 7). However, as
we can observe, this strategy is better overall since it
allows PFS to handle a larger range of workload, i.e. 23
streams, as compared to a maximum of 16 streams for
UFS.

5 Comparison of PFS and UFS on QoS Metrics

The QoS metrics we measured are unit, aggregate and
consecutive drift factors and loss factors, as described
in Section 3.

5.1 Experiment 4 : Measuring Drift Factors

This experiment is designed to measure the effect of
UFS and PFS approaches to file management on drift
profiles of streams, which specify the average and bursty
deviation of schedules for frames from ideal expected
points in time. We measured the difference between the
ideal rendition time and the actual rendition time as a
unit granule drift. The aggregate drift is the sum of unit
granule drifts over some interval, and the consecutive
drift is the sum of consecuiive non zero drifts.

5.1.1 PFS's Suitability for Real-Time Applications

In table 1, an example history of stream scheduling
based on timing metrics (drift profile) using PFS is
shown. This experiment was performed for a single
stream. Most UGD’s are zero, and only in the time slots
9, 10, and 14 frames have time differences 5, 5, and 6,
respectively. Hence the resulting ADF is 5+546 = 16
per 15 granules, and the largest consecutive drift is 5
+5 = 10, between s(8) and s(10). Hence, the CDF is
10.

However, for UFS (in table 1), the drift statistics
are quite different, i.e. most UGD’s have larger times,
and as a result the ADF (1125) and the CDF (1014)
are much larger than those measured for PFS. Conse-
quently, UFS is not well suited to support perceivable
continuity of CM streams which are sensitive to drifts.
Thzough this experiment, we can say that PFS preserves
more faithfully the characteristics of real-time applica-
tions than UFS does (in Figure 9). Also, when we
increase the number of concurrent streams (1 to 20),
the ADF values are increased.

5.1.2 History Based Stream Scheduling

Consider a example QoS specification, where the accept-
able drift profile is {100ms//30, 20ms) and the accept-
able rate profile is (30, 100). At any point in time, the




1
O
!
{
!

A T N S g Yt T o AT AR T ari e,
R A I A e SAT

A

" T T ROR R TS T N Sy, eprapte
I R S 2 T WA e A

g T

Py G A S TR L

TimeSlot (PFS) | 1121341516780 11]12]13[14115
UGD 010 D{D]JO|0D]0]|5[5 [0 [D]JO]JBJOD
ADF DIOJDI0DJ0J0I0]J0[5310]10 1010 ] 1616
CDF P{0]010]0]0j0]{0{5]10j 0] 0406 |60
T3] 2 ] 3] 4] 516 17 181 9 (10 1] 1213 7] 14 [ 16
—  UGD | MI] 291 9 | 6 {8 [ 7 [ 6 2 (8] 71382 0 T q
ADF 741 | 770 | 770 | 785 | 874 | 081 | 887 | 880 | 978 | 985 | 993 | 1014 [ 01 { 1121 11§S‘J
CDF 741 | 770 | 770 | 786 | 874 | 881 | 857 | 669 | 978 | 985 | 993 | 1014 | 0 7 11
Table 1: Media Granule Renditions in PFS and UFS
Examgle ot Dt . P . . 4
ool T, Py s— scheduling policies as history-based scheduling policies,
Fioed i Gh as they take the history of stream progress into account
10 streama [PES) — . . . . s v .
e b in making their scheduling decisions. Our current in-
ool Sawam .—-:—‘ vestigation is experimenting with such policies.
T - ,,;’;: 5.2 Experiment 5: Loss Factors
i o S—
g A Hr gy 1 This experiment is to measure the effect of loss fac-
et tors which specify aggregate and consecutive frame loss
wl ratios. We measured the difference between the ideal
frame arrival time and the actual frame appearance
time. Using these values, we calculate the gap between
the ideal media granule and the presented media gran-

Figure 9: Unit Sequencing Drift Factors
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Figure 10: Unit Sequencing Loss Factors

time at which the next-frame {granule) is to be sched-
uled is restricted by the history (at this point in time) of
unit granule drifts [24]. To satisfy the drift profile, the
next timing interval of rendition is given by {equation
6):

D(i)}.T-:-i-;l; +rmin {—2—

1
T; + — — min ,
i+ { olo+0)

[+ 2
_ DG
o+ ) o

where, D(i) is the maximum drift slack available for
s{(% +1)), and satisfies D(i) > 0.

At a rate of 33 frames/sec, the ideal time of rendi-
tion for 16th frame is 495 ms. According to ( 6), the

. rendition interval for the next slot should be within the

interval [495 — 10,495 + 10} = (485, 505}. Such informa-
tion can be used to determine how to assign priorities
to streams at this point in time. We call such class of
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ule as unit sequencing loss. We set a threshold granule
period of time slot, and if the gap is larger than the
threshold value, we assume the frame is lost. If the gap
is between 0 and the threshold, we consider the frame
as being delayed. Otherwise, it arrives on time, Tha ag-
gregate media granule loss is the sum of unit sequencing
losses and the consecutive media granule loss is the sum
of non zero consecutive unit sequencing losses.

In the current experiment to measure the effects of
content based QoS metries (loss factors: such as USL,
ALF, and CLF), we observe that both PFS and UFS
provide fairly uniform and stable results (in figure 10).
As we see in experiment 4, in measuring drift factors for
single and/or muitiple stream(s), we get better though-
put results (less loss) in PFS than in UFS. Comparing
single stream to multiple streams, the former situation
leads to lower loss than the latter for both PFS and
UFS.

6 Conclusions

Given the very large size of continuous media data, e.g.
video, most multimedia applications must access data
from secondary and/or tertiary storage during execu-
tion. This makes the performance of continuous me-
dia files systems critical to overall system performance.
Additionally, access to continuous media requires that
some Quality of Service (QoS) parameters {specified by
the application) be met. These include specification of
retrieval rate and its variation, allowable timing drift,
acceptable average and bursty errors, and degree of syn-
chronization. Conventional file systems do not have any
notion of QoS, and thus fail on two counts. First, they
are unable to provide any guarantees regarding QoS,
and second they are not able to take advantage of the
application’s tolerance {specified by the QoS parame-
ters) in optimizing the file system performance. In this
paper we present results from the experimental evalu-

PR ==, . LTI T
R e P e T P e




ation of a continuous media file system, called Presto
File System (PFS), which has been implemented in the
context of a distributed multimedia application devel-
opment environment that we are prototyping. Our on-
going work is developing storage and access mechanisms
that take advantage of QoS specifications to optimize
system performance.
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