
CORBA Evaluation of Video Streaming wrt QoS
Provisioning *

Wonjun Lee and Jaideep Srivastava
Department of Computer Science & Engineering

University of Minnesota, Minneapolis, MN 55455

{WJLEE[SRIVASTA}KS.UMN.EDU

Abstract
This paper describes the design, implementation, and
evaluation of CORBA and Socket-based Continuous Me-
dia (CM)  systems. TCP/IP is not suitable for distributed
applications which require high network bandwidth and
timing-criticality. UDP/IP is one of the alternatives.
However, due to the fact that UDP is a lossy protocol,
many issues arise when implementing distributed CM ap-
plications. Most of the QoS  (Quality of Service) metrics
known so far assume that the communication channel is
lossless. In this paper, since we use UDP for CM data
transmission, we adopt a new QoS metric that is appli-
cable to lossy streams to evaluate the performance of our
CM server. To reduce QoS Loss factors and Drift fac-
tors, we adopt a new strategy, called QoS-Driven Drop-
ping Mechanism, for the CM server. Besides the tradi-
tional C-socket (TCP- UDP/IP)-based CM server mech-
anisms, we implemented our CM server on CORBA. It
turns out that the CORBA-based implementation run con-
siderably slower than the UDP-version, but faster than the
TCP version.

1 in t roduct ion

Continuous media (CM) servers have recently been
a hot research topic for several reasons. Network
speed has been continuously increasing, and there-
fore services like Video on Demand, Teleconferenc-
ing, Distance Learning, etc. are likely to be popu-
lar in everyday life. However, given the limitations
of current network bandwidth, straightforward TCP

*This work is supported by Air Force contract number
F30602-96-C-0130  to Honeywell Inc, via subcontract number
B09030541/AF  to the University of Minnesota.

implementations are not suitable for such bandwidth-
sensitive applications. TCP has its own flow control
mechanisms, error detection and retransmissions,  all
of which add extra time as well as network bandwidth
overhead to the transmission. This causes unex-
pected and unpredictable delay and jitter when trans-
ferring CM data, while timing is one of the most criti-
cal requirements of CM applications. However, many
CM applications don’t need highly reliable transmis-
sion. Losing some frames is less important than hav-
ing too much delay jitter or losing synchrony between
streams. Thus we conclude that UDP is more suit-
able for CM applications than TCP. Especially, we
can take advantage of the fact that even though UDP
is a lossy protocol, the number of frames lost is not
that many, and in most cases, is still in an acceptable
range. This fact gives us an important observation
that adding some control channel, having more intel-
ligent dropping mechanisms will give us good perfor-
mance in terms of both timing quality and number
of lost frames.

We ported our original socket(TCP-UDP/IP)-
based CM server [2]  to CORBA. We use version 2.0 of
Orbix from IONA  Technologies as the ORB [l].  This
replaces all C socket calls with stubs and skeletons
generated from a pair of CORBA interface definition
language (IDL) specifications. The IDL specification
uses sequence parameters for the data buffer rather
than string parameters which are slower. Due to the
higher fixed overhead of CORBA such as demulti-
plexing and memory management, this version shows
much lower performance.

In this paper, we present the design, implementa-
tion and performance evaluation of a QoS-driven CM
server based on CORBA and Sockets. In section 2,

443
O-8186-9218-9/98 $10.00 0 1998 IEEE!



we describe our motivation and objectives in design-
ing our CM server and QoS  metrics we used in the
experiment. Section 3 presents the detailed design of
our CM server including the architecture, QoS-driven
dropping mechanism and implementation issues. In
section 4, we present the results of an experimental
evaluation of our CM Server system based on the QoS
metrics described in section 2 for several variable fac-
tors such as file systems, network protocols, server
types, and number of streams. Section 5 presents
concluding remarks.

2 Motivation & Objectives

In order to achieve high performance from CM
servers, the design must consider the resource con-
straints as well as the properties of CM streams. CM
streams have their own features and special QoS met-
rics. Since we opted to design our CM server and
clients based on the lossy UDP protocol, we should
measure its performance using the appropriate QoS
metrics. These QoS  metrics play an important role
in our &OS-driven CM server, in particular the &OS
Manager.

2.1 QoS Metrics

Wijesekera [5]  defined a set of metrics that are suit-
able for measuring the lossy nature of UDP based
CM communication. Continuity of a CM stream is
metrized by three components; namely rate, drift and
content. For the purposes of describing these met-
rics, we envision a CM stream as a flow of data units
(referred to as logical data units - LDU’s  in the uni-
form framework of [4]). The ideal rate of a flow and
the maximum permissible deviation from it consti-
tute our rate parameters. Given the ideal rate and
the beginning time of a CM stream, there is an ideal
time for a given LDU to arrive at the client, e.g. to
be displayed. Given the envisioned fluid-like nature
of CM streams, the appearance time of a given LDU
may deviate from this ideal. The rate variations can
be measured more accurately by drift parameters.
Our drift parameters specify aggregate and consec-
utive non-zero drifts from these ideals, over a given
number of consecutive LDU’s in a stream.

In addition to timing and rate, ideal contents of
a CM stream are specified by the ideal contents of
each LDU. Due to loss, delivery, or resource overload
problems, appearance of LDU’s may deviate from this

ideal, and consequently lead to perceived discontinu-
ity of CM streams. Our metrics of continuity are
designed to measure the average and bursty devia-
tion from the ideal specification. A loss or repetition
of a LDU is considered a unit loss in a CM stream.
(A more precise definition is given in [5].) The ag-
gregate number of such unit losses is the aggregate
loss of a CM stream, while the largest consecutive
non-zero loss is its consecutive loss.

Human response to video and audio is quite in-
teresting. According to [5], up to 23% of aggregate
video loss and 21% of aggregate audio loss are tol-
erable. The acceptable values for consecutive loss of
both video and audio are approximately 2 LDU. Up
to about 20% of video and 7% of audio rate variations
are tolerable.

2.2 Object ives

It is a reasonable requirement to expect a CM server
to guarantee that all the &OS  parameters defined
above are met. When the load on the CM server
is low, it is possible to meet this requirement. How-
ever, when the number of concurrent CM streams
increases in the CM server, it becomes difficult to
guarantee all the QoS  parameters. It is easy to guar-
antee only ALF and CLF by delaying the following
LDUs,  which makes the ADF and CDF unaccept-
able. On the other hand, it is easy to guarantee only
ADF and CDF by delaying the early LDUs and drop-
ping the late LDUs,  which makes the ALF and CLF
unacceptable. Given certain resources, we want to
support as many CM streams as possible, whose QoS
parameters are all within acceptable limits. There are
three possible approaches: (i) to guarantee ALF and
CLF first, (ii) to guarantee ADF and CDF first, and
(iii) to compromise between guaranteeing ALF/CLF
and guaranteeing ADF/CDF. Furthermore, as more
clients require CM streams, the quality of service of
CM server will degrade. It is desired that the degra-
dation be graceful. To guarantee each client to be
served with some reasonable quality, the admission
control is also necessary.

3 Design of CM Server

In this section, we describe the architecture and de-
sign of our CM server. An important aspect is its
QoS-driven dropping mechanism.

444



3.1 Architecture

The CM server has a typical client/server architec-
ture. It includes one CM server and one or more
CM clients, which are served concurrently. Figure
1 shows the architecture where the server provides
multiple streams to the requesting clients across the
network.

The CM server has four types of components, i.e.
single instantiations of the Network Manager and
the QoS Manager, and multiple instantiations of the
Proxy Server and the I/O Manager. There are as
many proxy servers as clients. The Network Manager
responds to clients’ connection requests. The QoS
Manager is responsible for admission control and I/O
scheduling. Each Proxy Server communicates with a
client, receiving CM stream operation requests and
sending CM data across the network. Each I/O Man-
ager reads CM data from disks on behalf of the cor-
responding proxy server. The CM client is relatively
simple compared with the CM server, and has two
main components, namely a Client N/W Controller
and a CM Player.

3.2 QoS Driven Dropping Mechanism

The major task of the proxy server is to send the
CM stream to the client, and ensure the desired data
rate and QoS requirements. The proxy server divides
its service time into service cycles. The length of
a service cycle is decided by the playback rate of
the CM stream. For instance, if the data rate is
30 frames/second, the service cycle is l/30 second
long. In the beginning of each cycle, the proxy server
wakes up and sends out a LDU. Then it waits till the
beginning of the next service cycle. Once the CM
stream begins, every service cycle is associated with
a LDU. A LDU is late for a service cycle if it is not
ready at the beginning of the service cycle. In general
cases, the proxy server wakes up on time and sends
out the next LDU. However, there are some excep-
tions. When a service cycle begins, the related LDU
may not be ready for potentially two reasons. First
is that the LDU is scheduled not to be read from
the disk at all. Second is that the proxy server may
wake up late in a service cycle because the non-real-
time operating system can not guarantee the required
timing. We allow a small interval of time t according
to the permissible drift. If the proxy server does not
wake up till t has elapsed in a service cycle, the proxy
server is considered late.

We propose three approaches to handling these
problems:

The first approach is to send the LDUs  sequen-
tially without any LDU’s being dropped. This
approach, which we call the sequential mecha-
nism, favors the ALF and CLF QoS parameters.
Although the sequential mechanism has the best
result for ALF and CLF, performance on other
QoS parameters may be very bad and the sys-
tem’s capability is restricted.

The second approach is called the pure dropping
mechanism. When a LDU is late or the proxy
server wakes up late, the proxy server drops the
LDU and sends the next LDU instead. The pure
dropping mechanism favors the ADF and CDF
QoS parameters. The drift factors gets the best
results, but the LDU loss may increase to an
unacceptable level.

The third approach tries to compromise between
the loss factors and the drift factors, and is called
QoS  driven dropping mechanism. It is done by
mainly keeping the CLF less than 3. In this
way, a LDU is dropped only when the dropping
doesn’t affect the video or audio quality, and the
drift factors are kept as low as possible. Fur-
thermore, in high load some LDUs are not re-
trieved from the disks to save I/O bandwidth.
The proxy server also knows which LDUs are not
retrieved. So, this QoS driven dropping mech-
anism helps to provide good performance with
graceful degradation.

3.3 Integrat ion with CORBA

Extending the socket interface to use CORBA re-
quires some modifications to the original C/Socket
code. We replaced all C socket calls with stubs and
skeletons generated from a pair of CORBA interface
definitions. One IDL interface (called CM-User) uses
a sequence to transmit the data from server to client,
and the other IDL interface (called CM-Request) has
operations for opening a video stream from the server
and six video functions such as play, fast-forward,
slow-forward, pause, resume and stop. The video
functions change the rate of playout  with the client’s
process id and a given play rate. The putMJPGFrame
operation of CM-User,  which is part of the client in-
terface is called from the server (in proxy server) with
two parameters: a sequence of MJPEG frames and

445



USERS

Figure 1: CM Server-Clients Architecture

its length. The playMJPG operations of CM-Request by performing a linear search through the list of op-
in the server side use oneway  semantics for video erations in the IDL interface. Henceforth, operations
functions since video distribution needs only uni- in CORBA-based CM server should be ordered by
directional control signal transfer, i.e. from client to considering this, i.e. decreasing frequency of use.
server.

We ported the first version of socket-based CM
server to CORBA. The CORBA implementation was

4 Experimental Evaluation

developed using a single threaded version of Orbix
2.0 which fully supports the OMG 2.0 CORBA stan-

In this section, we compare the performance re-
sults of the three kinds of CM server architectures

dard [l].  All C/socket calls were replaced with stubs
and skeletons generated from a pair of CORBA in-

(TCP/UDP/CORBA)-based on experiments which

terface definition language (IDL) specifications. The
use QoS  metrics such as ALF, CLF, ADF and CDF.

IDL specification uses sequence parameters for the
data buffer rather than string parameters, which are 4.1 Evaluation Metrics

somewhat slow. It is because the IDL sequence map-
ping contains a length field, whereas the string map-

In table 1, we show the metrics used in our ex-
e va lua t i o n .

ping does not. This length field helps the IDL stub
perimental We measured the perfor-

easily determine the end of the sequence.
mance of CM servers by having servers run on
rawana.cs.umn.edu  and having CM clients run on an-

The main drawback of using CORBA in CM Server other machine (sejong.cs.umn.edu)  in the Computer
is that the data copying overhead and the higher Science Department at the University of Minnesota.
fixed overhead of CORBA considerably limits its Two different file systems were used: (1)  PFS (Presto
performance. For small buffer sizes, the higher File System) developed at the University of Min-
fixed overheads of CORBA, such as memory man- nesota [3]  (2) UFS (the most conventional file system,
agement, makes the performance lower. For large i.e. Unix file system). The QoS metrics we measured
buffer sizes, another factor such data copying over- are ALF, CLF, ADF, and CDF, which were all de-
head significantly affects the performance, and lim- scribed in detail in section 2.1.
its the throughput. Every time a request is made
to the CM server, the request message of CORBA
contains the name of its intended remote operation

4.2 Exper imental  Resul ts

represented as a string. Thus, CORBA demultiplexes The main capability of the CM Server is its QoS-
incoming request messages to the appropriate upcall driven dropping mechanism based on the network

446



1 Testing Sites
I

1 CM Server types 1 QoS  Metrics 1 # of Streams 1 File Systems
I I I I

sejong.cs.umn.edu CM-Server1 (TCP) ALF 1 PFS
(CS Dept, U of MN) CM-Server2 (UDP) CLF UFS

CM-Server3 (CORBA) ADF
CDF 12

Table 1: Metrics Used in the Experiments

traffic, to uniformly maintain the QoS drift factors
such as ADF and CDF. The dropping mechanism
in CM Server drastically reduces time factors under PI
heavy network traffic. Yet, we should be able to con-
sider the bad effects gained by lost of lost frames un-
der the situation of many streams running. We tried
to exclude the other undesired factors issued by other
processes running during our experiments.

gies, 1995.

We also did experiments using CORBA-Based CM
Server system and compared its performance re- [3]
sults with those of Socket (TCP-UDP/IP)-Based CM
Server systems, and figured out that the perfor-
mance of CORBA-Based system is better than that
of TCP/IP-Based system, but it is worse than that
of UDP/IP-Based CM Server system on the five QoS
metrics. We used the only Presto File System in this
experiment. (Figure 2(a), 2(b), 2(c), 2(d)). 141

Wonjun Lee, Difu Su, and Jaideep Srivastava. A
QoS-Driven Networked Continuous Media Server.
In Proceedings of SPIE International Sympo-
sium on Lasers, Optpelectronics,  and Microphon-
ics (Electronic Imaging and Multimedia Systems:
SPIE Symposium on Photonics China - PC’98),
Beijing, China, September 1998.

Wonjun Lee, Difu Su, Jaideep Srivastava, D.R.
Kenchammana-hosekote, and Duminda Wijesek-
era. Experimental Evaluation of PFS Continuous
Media File System. In 6th ACM Int’Z Conf. on
Information and Knowledge Management (CIKM
‘97), November 1997.

5 Conclus ions

Ralf Steinmetz and Gerold Blakowski. A Media
Synchronization Survey: Reference Model, Spec-
ification and Case Studies. IEEE Journal on Se-
lected Areas in Communication, 14(1):5535,  1996.

In this paper, we described a CM server architecture Fl
and techniques to implement distributed CM applica-
tions. We have described QoS metrics that are appli-
cable to a lossy channel like UDP, and how we evalu-
ated the performance of our CM server based on these
metrics. We described the design issues and imple-
mentation details of CM servers using both C/sockets
and CORBA as distributed communication mecha-
nisms. The QoS metrics include specification of re-
trieval rate and its variation, allowable timing drift,
acceptable average and bursty errors, and degree of
synchronization. Our on-going work includes devel-
oping intelligent algorithms and mechanisms of ad-
mission control and QoS management that take ad-
vantage of QoS specifications to optimize system per-
formance.

Duminda Wijesekera and J. Srivastava. Experi-
mental Evaluation of Loss Perception in Contin-
uous Media. 1998. ACM-Springer Multimedia
Systems Journal.

References
[l] Orbix  2 Programming Guide . IONA Technolo-

447



(a) ALF

(c) ADF (d) CDF

Figure 2: Experimental Results on QoS  Metrics for Socket- vs. CORBA-Based CM Server Systems

448


