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Abstract

The per service cost have been serious impediment to wide spread usage of on-line digital continuous
media service, especially in the entertainment arena. Although handling the continuous media may be
achievable due to the technology advances in past few years, its competitiveness in the market with the
existing service type such as video rental is still in question. In this paper, we propose a model for contin-
uous media service in a distributed infrastructure which has a video warehouse and intermediate storages
connected via a high speed communication network in an effort to reduce the resource requirement to
support a set of service requests. The storage resource and network resource to support a set of requests
should be properly quantified to a uniform metric to measure the efficiency of the service schedule. We
developed a cost model which maps the given service schedule to a quantity. The proposed cost model
is used to elaborately capture the amortized resource requirement of the schedule and thus to measure
the efficiency of the schedule. The distributed environment consists of massive scale continuous media
server called a video warehouse, and intermediate storages connected via high speed communication
network. An intermediate storage is located in each neighborhood, and its main purpose is to avoid the
repeated delivery of the same file to a neighborhood. We presumed the situation where a request for a
video file is given sometime in advance. We develop a scheduling algorithm which strategically repli-
cates the requested continuous media files at the various intermediate storages.

Keywords: video caching, storage overflow, video scheduling, continous media delivery, distributed
service, cost model

1 Introduction

1.1 Motivation

Entertainment, education, teleconferencing, telemarketing, telemedicine, etc. are a number of promising ap-
plications of the Video-On-Demand technology. In some applications such as business and medicine, the
cost of the technology maybe justifiable, but in other applications such as home entertainment, this technol-
ogy will have to compete with $2 - $3 video rental cost. There is a significant opinion in the community that
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a true on-demand video service, i.e. one where the video begins as soon as the customer makes a requrest for
it, cannot be provided at a comparable cost to video rental rate in the near future. Given the fact that there
is sufficient consumer dissatisfaction with fast rising cable rates, any expensive technology is not likely to
be very successful in the mass entertainment arena. On the other hand, if we examine existing video rental
patterns, it is not unreasonable to assume that customers would be satisfied with a Video-On-Reservation
service, where the customer makes the service request some time in advance to the actual presentation time,
i.e. an hour, a day, etc . We believe it is possible to provide Vide-On-Reservation service in a cost-effective
manner. Since the a set of user requests is available to entertainment provider in VOR service, the server can
perform global optimizations based on the user request information as well as the the availibility of various
resources. For the Video-On-Demand service, such pre-planning or off-line computing is not possible, due
to its inherent on-demand nature.

Given the limits on I/O subsystems of the server, there are many difficulties in supporting multiple
service requests directly from a single server, while simultaneously achieving low cost. Furthermore, as the
length of the communication route between server and client increases, the cost of maintaining smooth media
flow across the network increases dramatically. In this paper we present the idea of providing continuous
media service in a distributed manner. The distributed environment consists of a number of intermediate
storages and video warehouses, all connected by a high speed network. When there are multiple storages
distributed over the area, a user can get service from various sources other than from central server, and the
users can share a file at an intermediate storage. Fig. 1 depicts the environment, which consists of a video
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Figure 1: Topological Layout

warehouse, intermediate storages
�����

’s, and the users in each neighborhood � � ’s. A video warehouse is an
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archive that may have several thousand video files in its storage system.

1.2 Related Works

In this section, we briefly introduce the works done in each component of our distributed service environ-
ment. Papadimitriou et al[PRR94] proposed the service model for on-line home entertainment service and
also devised an algorithm to arrange the service schedule.

We categorize user requests into two different types based on whether service request is made in advance
or not: Video-On-Demand and Video-On-Reservation. Little et al[LV94] classifies interactive services into
five categories based on the amount of interactivity allowed.

The purpose of the intermediate storage is to temporarily store the files. To exploit the bandwidth
capacity and space capacity of the intermediate storage, the files needs to be efficient placed over a set
of disks. Little et al[LV95] proposed an algorithm to place video files to the distributed storage system
based on the popolarity of the video file. Dan et al[DS95] proposed to consider the ratio between the
space requirement and bandwidth requirement of a file in allocating the disk space. Wan et al[WD96]
used the idea of bandwidth to space ratio in determining striping width of a file. Due to huge volume and
continuity requirements, data block placement is an important factor in determining the performance of the
disk storage. By placing the blocks efficiently, it is possible to support a larger number of concurrent video
sessions[RVR92, KHS94].

Video warehouse uses a high speed network to deliver the service to customers all over the metropolitan
area[BC89, BB94, Bou92]. The existing network infrastructure is not originally designed to support time
critical application. There have been a number of proposals to guarantee the continuity over the high speed
communication network[Tow93, ZDE

�

93, SZKT96]. The other community of academia and industry fo-
cuses on utilizing the existing communication medium such as twisted pair telephone line or coaxial cable
line which is already available to most of the residential unit. The idea of a cable modem is to provide
the internet service to PC users over the TV cable systems. Such modems can delivery upto 30 Mbps to
each residential unit[Hal96, BR97]. Asymmetric Digital Subscriber Line[SL92, BR97] is one of the most
promising technologies to increase the capaicty of the copper loops. ADSL is now capable of pumping the
data at upto 6 Mbps.

Development of optimal pricing model, how much user has to pay for the service?, suddenly draws wide
attention from various communities. This is because the network infra structure makes the transition from
research testbed to commercial enterprise. Pricing model and QoS policy are tightly coupled to each other.
Shenker et al[SCEH96] and Cocchi et al[CSEZ93] investigates the pricing model of the multiple service
class network.

Video Warehouse stores several thousands of continuous media files in its archive. There have been
a number of suggestion about how to design the massive scale data server. Hierarchical storage struc-
ture in video warehouse is the promising solution to achieve the cost-effectiveness of the data storage.
Ghandeharizadeh et al[Gha94] and Keinzle et al[MK94] worked on hierarchical storage structure to effi-
ciently utilize the bandwidth of the several storage types. Doganata et al[DT94] provided a cost model
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for hierarchical-storage-based continous media server. Won et al[WS96] provided a stochastic model to
measure the thruput of the hierarchical storage server.

1.3 Contributions

A great amount of efforts from various community is put in supporting the continuity requirement of the
on-line multimedia information delivery. However, economic aspect of servicing a set of users considering
storage and network resources is paid little attention. In this paper, we propose the usage of intermediate
storage to relieve the burden of the central server - information provider and to reduce the network traffic.
We develop a mechanism, cost model, which maps the overall resource requirement for supporting the set
of requests to the domain of comparable values, cost. The proposed cost model enables the information
provider to examine the cost-effectiveness of a certain service delivery schedule. We focus on the problem
of minimizing the cost for servicing a set of Video-On-Reservation requests. The cost of using intermediate
storage and the cost of using network determines how to deliver the service to the end-user. We develop an
algorithm to strategically replicate the files to intermediate storages to obtain the efficient service schedule.
An important side benefit of this optimization is that for a given load, the environment will be optimized to
utilize the least required capacity, thus freeing up valuable spare capacity for the truly Video-On-Demand
applications.

The rest of the paper is organized as follows: Section 2 introduces the model of the environment and the
services provided. In section 3, the mathematical formulation of the problem and the cost model for servic-
ing delivery is provided. In section 4, we present our approach to solving to the video delivery problem, and
in section 5, we discuss how to handle storage overflow. Performance evaluation is presented in section 6
and conclusions in section 7.

2 Video Delivery Environment and Services

2.1 Video-On-Demand and Video-On-Reservation

In the proposed environment, we classify the type of services into two categories, Video-On-Demand and
Video-On-Reservation. In VOD service, a server takes an immediate action to service the request, while in
VOR service, user request is to make the reservation for service in advance. To handle VOR requests, time
is divided into cycles. For example, supposing we consider 24 hours to be the length of a cycle, all requests
for videos to be shown during cycle

�
must arrive at the server by a predefined time before the start of the

cycle
�
. If 24 hours is too long a period for an advance reservation, one could consider smaller cycles, say

12 or 6 hours. Alternatively, one can have a number of cycles of various lengths, and requests for shorter
cycles would have a higher cost. This observation is likely to lead the information provider to attract airline
executives to do their pricing. For example, the user gets 75 % discount of the regular price if he makes
a video request in 48 hour advance of his requested showing time, 24 hour advance with 60 % discount,
6 hour advance with 25 percent discount. Considering the computation time to obtain the schedule, the
scheduler has to start the scheduling algorithm early enough so that the schedule information is available

4



by the starting of the respective cycle. The advance reservation property of the VOR request enables the
scheduler to collect all the requests before it starts scheduling.

In scheduling VOD requests, there is neither sufficient information nor time to perform the global re-
source optimization which is possible for VOR requests. Furthermore, since overall network and storage
capacities are fixed, developing efficient, i.e. least resource utilizing, schedules for the VOR requests has the
added benefit of making more resources available for dynamically arriving VOD requests.

2.2 Economics of Storage and Network

Due to the huge volume and bandwidth constraints of the playback, continous media application imposes
another dimension of complexity to the computer systems. Multimedia file compressed with MPEG-2
encoding[WG193] scheme requires 3 - 6 Mbps bandwidth for its playback. Assuming the typical length
of a video file to be 110 minutes, it requires about 3.3 Giga bytes of storage space for an average sized video
file. With the current market price for hard disk at approximately $ 100/(Giga Byte), it costs $165,000 to
maintain five hundred video files on the disk storage, excluding other hardware overhead.

Aside from the cost of disk storage for five hundred video files, the problem of interconnecting and
maintaining huge number of disks with the existing SCSI interface arises as an obstacle to store five hun-
dred video files on the disk subsystem. For example, considering the capacity of a single disk which is
commercially available ranges from 2 - 10 Giga Bytes, at least 50 disk drives need to be interconnected to
form disk storage subsystem. Recently, there have been proposals for new storage interfaces which adopt
serial data communication technology[Dem95, SV95]. We argue that hierarchical storage structure, where
secondary storage being disk subsystem and tertiary storage being tape library or optical drive is the promis-
ing storage architecture for cost effective data management.

The purpose of a intermediate storage is to temporarily store the video files to avoid repeated trans-
missions to the same neighborhood. Each intermediate storage is primarily responsible for supporting its
neighborhood consisting of several houses. It is not expected that an intermediate storage

��� �
will have

sufficient capacity to store all the files requested by neighborhood � � at peak demand. Insufficient storage
space available in the intermediate storage will result in a much higher service cost, since a continuous play-
out must then be supported across the network. We provide examples for the usage of intermediate storage
in Fig. 2. For a popular video, it is likely that the video file will have to be shown several times in the same
neighborhood. Consider Fig. 2, which shows three requests for Star Wars from

���
in a 90 minute interval.

Rather than delivering the video directly from
���

three times, it is possible to store the video file at
� �

while serving the earliest request. The second and third video requests can now be serviced directly from� �
. Considering the high load on the warehouse server and on the metropolitan area network during prime

time hours, it may be much cheaper to service the three viewers with video caching. Fig. 2 illustrates the
usage of the intermediate storage system for this purpose.
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���
set of Intermediate Storages�����
Intermediate Storage i�
	���
�� set of storage costs����������� ��� ��� charging rate for intermediate storage

��� �
(in $/ ��� �����"!#�$�$% �

&'	���
�� set of network costs(��)�������+* ,�- � cost rate of the network connection between
��� �

and
����.

in $/byte/ Number of available video files0 132�5476 0 �
0 �

a set of requests for file *
8 �

service schedule of file * obtained from individual video scheduling8:9<;>=� �@?A��, ����. � service schedule obtained with the constraints �@?B��, ����. �
8

service schedule for all files i.e.,
1C2�5476 8 �

D � 8 ���
total cost of service schedule

8 �
D � 8 �

total cost of service schedule
8

EGF �$�
H�IKJ)L � �$�M��?B��, ��� . � set of stays involved in cache overflow during interval ?B� at
��� .

EON7P3Q�R S�T)U
Overflow situation ?B��, ����. .V P3Q�R S T U R W�X
heat of rescheduling % � with respect to

EON P3Q�R S�T U
Y � length of service for file *
��*>Z�� � size of the file * (byte)[ �

file transfer information, �+��J)\]��� � ,^�^_� ,^* [ � �
% � file residency information, �a` �cb� ,a�^d�
e ,aI�J�% � ,a* [�� ,^(�b>f W� , �$�#� F *>%M�gI+*��#� � .

Table 1: Variables
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Figure 2: Usage of the intermediate storage system

3 Problem Formulation

3.1 Service Schedule

A user request arriving at the server consists of three attributes, user id, video id and starting time. The
service schedule

�
is a set of information about how to arrange the delivery of the continuous media streams

to end users. There are two types of information in a service schedule - network transfer information��� �����	�
���
���������
����� � and usage of the intermediate storage � � ���
�	���������
����� � . Servicing a video file
to end user requires network transfer of the stream and possible caching of the file at the intermediate
storage. The network transfer information

� �
is ( �
����� � � � �"!� � � � �

). #$����� � � is a sequence of network nodes,
i.e. %�&('*)� ��������� % ! &(+� , where %,&-'*)� and % ! &-+� correspond to intermediate storages. Instead of representing file
transfer route as a source and destination pair, sequence of nodes are used to represent the delivery route.
This enables the scheduler to dynamically select the route between each node, depending on the network
situation. Delivery information

� �
informs the server and intermediate storages that flow of file

�
from % &-'*)�

to %�! &-+� is to begin at � !� . Routing information between %,! &-+� and end user is not specified since we assume
the path between the user and its local intermediate storage is uniquely defined. The intermediate storage is
said to be local to a user if it is located in the same neighborhood with the respective user.

In servicing a set of requests, a video file has to be stored temporarily in various intermediate storages by
copying data blocks from the on-going continuous media stream. The purpose of storing a file in an interme-
diate storage is to temporarily cache the video file for subsequent delivery to other users. The information

� �
about temporary storage of a video file is the vector of five elements: .*/ �0&� � � 1�32 �
4 � � � � � � � � % &(' )

�05 ���
6 � � � 4 � 5 �*7 .
/ � &� � � 1� 2 denotes the interval of caching. � &� corresponds to the time when the file starts being loaded at the
intermediate storage. � 1� denotes the start time of the last service. A file resides at intermediate storage
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to service a set of the requests. The data blocks which have not been consumed by the last service need
to be maintained at the intermediate storage. The data blocks which are consumed by the last request in
chronological order are no longer required. Thus the caching interval / �0&� � � 1�
2 is is followed by the playback
duration of the last service.

4 � � � and
� � �

represent the intermediate storage and the respective file. % &('*)� is the
source of the on-going stream from which the data block is copied. % &-'*)� can be either another intermediate
storage or VW.

3.2 Cost Modeling

To measure the overall cost-effectiveness of the service schedule
�

, there needs to be a generic mechanism
which maps the given schedule

�
into a cost. Schedule

�
is a collection of network transfer information

� �
’s

and file residency information
� �

’s. The mapping mechanism should capture
�

’s resource consumption in
storage devices and the communication network. We define

�
as a mapping function that transforms service

schedule
�

into a quantity. The cost of
�

thus corresponds to
� . � 7 . We use the monetary metric to represent

the cost for a schedule
�

. The cost of a schedule
�

is sum of the cost of using storage devices and cost of
using communication medium. The network transfer information

� �
’s and file residency information

� �
’s

has the different formation and thus different function is used to obtain its respective cost. It is worth noting
that amortized resource requirement needs to be discriminated from cost. Amortized resource requirement
is a metric to capture the amount of resources. Cost is amount of the resource consumed multiplied by per
unit cost1 of each resource. In a heterogeneous environment, it is not possible to impose a uniform per
unit cost to all resources which have different performance and characteristics. For example, per unit cost
of high performance disk subsystem can be higher than that of general purpose disk subsystem. Per unit
cost is inherent to an individual resource entity, e.g. each intermediate storage or each network hop. We
develop the function

��� . � � 7 and
��� . � � 7 for file residency information

� �
, and network transfer information� �

, respectively which maps given information into the domain of cost. The cost of schedule
�

is hence
represented as in Eq. (1).

� . � 7 �
� �
�
��� � � � . � � 7��

���
�
��� � � � . � � 7 (1)

3.2.1 Cost Model for Storage

For continuous media files, playback length of the data file cannot be determined solely from the file size.
This is due to the fact that different files may require different playback rates and thus two files of different
sizes may have the same playback length. The amortized resource requirement at an intermediate storage
is a function of file size, duration of residency, and playback length.

� � . � � 7 is the amortized resource
requirement multiplied by the charging rate at the respective intermediate storage. To capture the amortized
storage space requirement of the service properly,

�	� . � � 7 has to reflect all the three attributes. In the charging
mechanism for storage, we propose a cost model that considers both the duration and the size of the service.
Unit of the storage cost model is $/(byte 
 sec).

1termed as charging rate of the resource in this paper.
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Files are loaded on an intermediate storage by copying data blocks from streams during its transmission,
and thus the disk space is filled incrementally until the entire file is cached. We assume that the storage space
of

5 � � � � ! � needs to be reserved from the start of the caching. We categorize the file residency information
� �

into two types: namely, short residency and long residency, depending on the length of interval / � &� � � 1�32 . Let� � ! � be a playback length of a file
� � �

.
� �

is categorized as short residency type if . � 1��� � &� 7�� � � ! � , and as
long residency type otherwise. In the rest of the section,

� �
is .*/ � &� � �*1� 2 �
4 � ��� � � � � % &(' )

�05 ���
6 � � � 4 � 5 �*7 .

Long Residency
Let us assume that the service list of

� �
is ��� � �	� �

� � 
 
 
 � �	
 , with service starting times ��� � ��� �
� � 
 
 
 � �

 ,

respectively. These users are serviced via continuous media stream from
� � 
�� ) � . Without loss of generality,

we assume ����� �
� �
� � 
 
 
�� ��
 . Thus, � 1� corresponds to ��
 , respectively. It is not necessary to keep the

entire file until the end of the service for ��
 , i.e. until time ��
 � � � ! � . This is because ��
 is the last user in
chronological order, and hence the file blocks sent to ��
 can be discarded. We assume that the space used by
file

� � �
will decrease linearly from ��
 to ��
 � � � ! � , and utilization will become � as the service for ��
 proceeds

to the end, in Fig. 3. Given this model of the storage space, the amortized storage cost for
� �

is formulated
as in Eq. (2).

� � . � � 7 � 5 ����� ��. � � 
�� ) � 7 
 5 � � � � ! �
� . � 1��� � &� 7 � � � ! ���� (2)

� � . � � 7 is equivalent to the area enclosed by the solid line of left-hand side graph in Fig. 3.

θ
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size(file)

θ

θ
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:
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θ > ρ θ < ρ

size(file)

ρ θ

File Caching

 File service

t1 t2

t1 t2 t3

t3
time

Playback Length

Length of Caching Interval

Figure 3: service length vs. resident duration

Short Residency
It takes � � ! � time to load the entire file to an intermediate storage. This is because the file is cached to an
intermediate storage by copying the data from the on-going playback of a file. In case the time interval
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between the first and last service time is no more then � � ! � , i.e. . �*1� � � &� 7 � � � ! � , playback for the last request
starts before the entire file is loaded. Right-hand side graph of Fig. 3 depicts the storage space requirement
for short residency. Let � � and � � be the starting time of the first and last request in the service list in

� �
,

respectively.

The file starts being loaded at � � and is completely loaded by � � � � � ! � . The second service starts at � � ,
which means that file blocks are gradually discarded from � � until � � � � � ! � . From � � , file loading and file
discarding proceed simultaneously until the first service is completed at � � � � � ! � . From � � � � � ! � , there is
only file discarding until the last ,i.e. the second in this case, service is complete at � � � � � ! � . Hence, the size

of the storage space which needs to be reserved at the start of the stay is
5 � � � � ! � 


�
+����� +���� � � �	� . The amortized

storage cost for
� �

for short residency can be formulated as in Eq. (3).

� � . � � 7 � 5 � ���*� . � � 
 � ) � 7�
 5 � � � � ! � 
 � 1
� � �*&�� � ! � 
 � � ! � � 5 � � � � ! � 
 � 1

� � � &�� � � ! � 
�. � 1��� � &� 7
�
� 5 � ���*� . � � 
 � ) � 7 
 5 � � � � ! � 
 . �*1� � � &� 7 � . � 1� � � &� 7

�
� � � ! � � �

(3)

Srate(
��� 
�� ) � ) is a charging rate of unit resource for

��� 
 � ) � . The actual value is determined by the service
provider based on the characteristic of the storage device.

3.2.2 Cost Model for Network

The objective of the cost model for the communication network is to properly capture the amortized band-
width cost to service a set of requests. A certain amount of network bandwidth needs to be guaranteed to
deliver the service to end users with the given QoS. The amount of bandwidth to be reserved for each stream
is determined by the QoS parameter. A number of policies have been proposed to provide the end-to-end
bandwidth requirement of the continuous media playback with given QoS. Among them are deterministic,
statistical or best effort[Tow93, Kru93, WK90]. We assume that the bandwidth requirement for a request is
determined by the requested file, which is provided by the service provider. Network transfer information

� �
is a vector of three elements, ( �3����� � � � �"!� � � � �

). Let � � ! � be the bandwidth requirement for file
� � �

’s playback.
The amortized bandwidth requirement for

� �
corresponds to � � ! � � � ! � bytes. As in the storage cost model,

we use a monetary metric as the basic unit of cost, i.e. $/byte. The network charging rate can be defined on
either end-to-end basis or per hop basis. Let �3��� �*� � be . %

�� ������� � %
������ 7 of

� �
, where %

�� and % ! �� correspond
to %�&('*)� and % ! &-+� . nrate( %�� � � % �� ) is the charging rate of the route between %�� � and % �� . In general, nrate . %�� � � % �� 7
will depend on various factors, e.g. network topology, link capacities, routing, etc. However, we assume the
underlying communication infrastructure maps all of these factors into a cost (i.e. $ amount) per proposed
unit, i.e. ��� �*� . We assume that nrate( % � � % � ) is fixed for the duration of video scheduling and service, and
is also known a priori. Depending on the underlying network structure, charging rate can be defined on per
hop basis or end-to-end basis. The function

� � . � � 7 which quantifies the network transfer information
� �

is
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Figure 4: Tree structured layout of a service schedule

formulated as in Eq. (4).

��� . � � 7 � � % ����� ��. % &-'*)� � % ! &(+� 7 
 � � ! 
 � � ! end-to-end basis network rate� � ��� � �� � � % ��� �*� . % � � � % � �
�� 7 
 � � ! 
 � � ! per hop basis network rate

(4)

3.3 Problem Description

We can view the overall service schedule
�

as the union of the service schedule for each file
�
,
� �

. The
proposed mapping function

�
and the cost models for storage and network enable the scheduler to compute

the cost of servicing a set of requests. Similarly, the scheduler can compute the cost of a schedule
� �

for video file
� ���� � � � . � � 7 of a cycle. The cost for servicing all requests in a cycle is

���� � � � . � � 7 , i.e.� . � 7 � � �� � � � �
. A file can be shipped to an intermediate storage directly from the video warehouse or

from an intermediate storage, with cost being the determining factor. The service schedule of a video
�
, for

a cycle, forms a tree structure as in Fig. 4. The goal of the video scheduler is to generate a set of service
schedule with minimum cost. The service scheduling problem can now be stated as follows:

Definition 1 Video Scheduling Problem( � ���
):Given

� a set of video requests � ,

� a set of network edges connecting a video warehouse
���

, and a set of intermediate storages,

� the charging rates for intermediate storage 	�

����� and network ��
������
� the storage capacity of each intermediate storage

11
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Figure 5: Structure of Video Scheduler

Find the set of file service schedules,
� � � + such that

� � � � . � � � + 7 � � . � 7
.

Unfortunately, the problem � ���
is NP-

� ����� 4 ���*� , and thus an efficient algorithm for the optimal solution
is unlikely. The details of the proof are provided in Appendix A. Due to the intractable nature of � ���

, we
focus our interest on developing an efficient heuristic algorithm.

4 Scheduling of Service Delivery

4.1 Design of Video Scheduler

4.1.1 Two Phase Scheduling

Video Scheduler is a program in charge of arranging the service delivery The objective of the scheduler is to
determine the service schedule

�
with minimum

� . � 7 , given the set of service requests. We approach the
problem with a two phase algorithm. Fig. 5 depicts the structure of the video scheduling algorithm.

1. Individual Video Scheduling: Find the schedules
� �

for each file
�

individually, assuming that the
capacity of intermediate storage is large enough to store any one video file. The

� �
determines (1)

the network transfer route of the continous media stream and (2) the residency period and location of
the file. In Fig. 2, user ��� has requested a video beginning at 4 pm. Two other users have requested

12



the same video, but at different start times prior to � � ’s start time. From the aspect of resource
requirement, it may be less expensive to down-load the video at

� �
when it is delivered to � �

, to
be later delivered to the other users, than to service the three users from the video warehouse. The
objective of the individual video scheduling is given the set of user requests for file

�
, to devise

� �
with the minimum

� . � � 7 .
2. Integrating Individual Video Schedules: Integrate the schedules

� �
, taking into account the storage

capacity constraints, and resolving any resulting storage overflows. In computing the individual
video schedules, the scheduler does not consider the space limitation in the intermediate storage. An
intermediate storage cannot accommodate all the video files scheduled for it during a certain time
interval because the sum of the file sizes may exceed its capacity. This situation is called storage
overflow. After computing the individual video schedules, the scheduler examines the individual
video schedules and detects storage overflow situation. The scheduler runs the overflow resolution
algorithm by re-scheduling some of the requests. The integration of the individual video scheduling
consists of overflow detection and overflow resolution. Resolving the storage overflow may result in
a less efficient delivery schedule, and thus increase the total service cost. Hence, a key objective of
integrating individual video schedules is to minimize the increase in the overall service cost.

If the capacity of every intermediate storage is sufficiently large so that it can accommodate all the video
files residing at it at any time, the scheduling can be completed at phase 1. However, service requests are
not distributed evenly over time. For example, the existence of terminology prime time confirms the uneven
distribution of request arrival times in TV entertainment. Thus, we assume it is not economical for the
service provider to make all the intermediate storage large enough to store the peak service requests.

4.1.2 Why Two Phase Scheduling Approach?

It is possible to take into account the space availability information in the first phase and thus storage
overflow can be avoided. One phase scheduling approach can be sketched as follows.

When the scheduler computes the schedule for a file
� � �

, it considers the intermediate stor-
ages with the sufficient available space as a possible caching site. The scheduler reduces
the space availability information at the respective intermediate storage according to

� � ! �
after

� � ! � is obtained.

Under one phase scheduling paradigm, the scheduler is not given an opportunity to analyze the schedul-
ing priorities among the files. Scheduling priority of a file means its relative importance to consume the
limited resources prior to the other files. Scheduling priority can be determined by popularity of the video
file. However, without reflecting the actual set of requests, the respective time and the respective locations,
it is not possible to determine which file or request has a priority to consume the limited resources first.
Analyzing the priority of the given set of requests introduces another stage in scheduling.

In our scheduling policy, individual video scheduling and storage overflow detection enables the sched-
uler to globally analyze the service cost for each file

�
, i.e.

� � � � � � �������,�
� , and to determine the scheduling

13



priorities among themselves. The file called victim which is determined to have lowest priority in scheduling
is thus re-scheduled to resolve the storage overflow.

4.2 Individual Video Scheduling

In finding the service schedule
�

, the scheduler collects the requests for the cycle and partitions them into
sets � � � � � � ���������

� with each of the � distinct video files requested. � � corresponds to the set of requests
for video

�
. The schedule

� �
for each � � is computed individually, i.e. in computing

� �
the scheduler does

not consider the resources required to service the other sets � � � ���� �
. In the individual video scheduling

phase, the scheduler focuses on minimizing the cost of each
� � � � � � �������,�

� . Fig. 6 illustrates a sample
topological layout, with respective % ����� � ,

5 ����� � , and user requests. We enumerate some of the possible

IS1

U 1
U 2

U
3

VW

Bandwidth: 6 Mbps

1:00pm, 2:30pm and 4:00pm respectively

Video Length : 90 min
Size : 2.5Giga Bytes

IS2

Network Cost

Storage Cost

IS2

nrate(IS1,IS2)

$0 $1 $2

VW IS1

nrate(VW,IS1)

0.10.2

$/(GBxHour)

cents/(Mbps*Sec)

U1, U2 and U3 requests for the same video file

Neighborhood 1

Neighborhood 2

Figure 6: Service Requests with Network Cost and Storage Cost

video schedules for Fig. 6 and the cost of each schedule. Let
� � � � � ! and � � ! be the file id, playback length,

and bandwidth requirement of the file, respectively. The cost is computed using the mapping function
�

described in section 3.3. Since all video files reside at VW permanently, the cost of storing video files at
the
� �

is assumed to be 0, i.e.
5 ����� �	� . ��� 7 � � .

��� �
is local to �

�
and

��� �
is local to

�
�
�
�
� � � . We

assume that � � ! is 90 min, and
5 � � � � ! is 2.5G Byte. We assume 6 Mbps bandwidth needs to be reserved for

the playback of the given file.

Schedule
� �

: All the requests for videos are delivered directly from the video warehouse.
� �

is as
follows:

� � � ��� �	�
���3�
�
� � and

���
=((
��� � � � �

), 1:00,
� �

),
� �

= ((
��� � ��� �	� � � �

),2:30,
� �

),
�
�

= ((
��� � ��� � � � � �

), 4:00,
� �

). Since there is no storage cost incurred in the schedule, the cost
of the schedule consists only of the network cost. The playback length of the file is 90 minutes
and it requires 6 Mbps bandwidth. Service for �

�
uses only the edge . ��� � ��� � 7 . The cost for
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servicing �
�
, i.e.

��� . � � 7 is % ����� ��. � � � � � � 7 
 � � 
�� � 
��	
 � � ��� � . Likewise, we can compute� � . � � 7 and
� � . � � 7 . � . � � 7 corresponds to

� �� � � � � . � � 7 , and thus
� � 
�� � 
�� 
 � � ����� ��� �
	
� � �

.

Schedule
� �

: While �
�

gets service directly from the
���

,
��� �

caches the file. �
�
, and � � are serviced

from the video file cached on
��� �

:
� � � ��� ���
���
�
�

�
�
��� � where

� �
=((
��� � ��� �

), 1:00,
� �

),
���

= ((
��� �	� � � �

), 2:30,
� �

),
�
� = ((

��� �	� ��� �
), 4:00,

� �
),

���
=([1:00,4:00],

� � �
,

� �
,
� �

,( �
���
�
�
)).

The cost for servicing �
�

is the same as in Schedule
�

1. With
� �

, the file is cached at
��� �

to
avoid repeated delivery over the network (

��� � ��� �
) in servicing �

�
and � � . We can compute

the storage cost using the formula given in Eq. (2). A storage space of 2.5G Byte has to
be reserved from 1:00 pm to 4:00 pm, and the length of the service is 1.5 hours.

� � . � � 7
corresponds to ��
 � 
 � � 	 � �
� ��� �
� ��� �� ��� � � ��� 	 .

The cost for
���

and
�
� , i.e.

�	� . � � 7 � ��� . � ��7 corresponds to
� 
 � � 
�� � 
�� 
 � � ��� � ��� ��� � � .

The cost for servicing
� �

remains unchanged at $64.8. Thus the
� . � � 7 is $138.975.

Schedule
� � : Schedule

� � is enhanced from the
� �

.
� � � ��� �	�
� �
�
���	�
� � � and

���
= ((
���

,
� � �

),
1:00,

� �
),

� �
= ((

��� ��� � � �
), 2:30,

� �
),

���
= ([1:00,2:30],

��� �
,

� �
,
���

, �
�
),

� �
= ([2:30,4:00],� � �

,
� �

,
� � �

, �
�
). While serving �

�
, the file is cached at

� � �
. � � gets service from

� � �
. By

loading the file at
� � �

, it is possible to eliminate the network transmission cost in servicing
� � . The cost for servicing �

�
remains the same.

� � . � � 7 is
� � 	 
 � � 	 
 � �

�
� ��� ��� ��� �� �
$
	 � � �
	 and� � . � � 7 is $11.25.

��� . ��� 7 which is network cost for servicing �
�

is
� � 
�� � 
�� 

� � ��� � ��� � � � � .

Hence,
� . � ��7 is ��� � � ��� � � � � � � � �
	 � 	 � � �
	 ��� � � � � ��� 	 .

Based on the proposed cost model,
�

3 turns out to be the most cost-effective schedule to service the three
users in Fig. 6.

Table 2 is a skeleton algorithm for the first phase. Function find video schedule() in table 2 com-
putes the service schedule for each file. Papadimitriou et al[PRR94] proposed a greedy heuristic of rec-
tilinear algorithm, which can be used as a find video schedule(). Let us assume that there are

4
users

Algorithm 1 IVSP solve
1 IVSP solve( � , 0 , & 	]�7
������<	���
 � ) �
2 for each files *�� M
3

8�� �!� _� " H�*�( [ F * [ �$J �$%$#]� [ \�IK��� 0 � ,!%'&)(
*,+�,!-,&)(
*,+ � ;
4

D � 8 � �!� _ � "/. �10 � D � 8 � ��� _� �
;

5 return(
8 � �!� _ );2

Table 2: pseudo code for the function of solving the Individual Video Scheduling Problem

� ���������,� �	
 requesting video
�
, 3 available video files, and � intermediate storages. The users are num-

bered chronologically with respect to service start time, i.e. � � � � � �
�
. The steps below describe the function4 � % � 6 � � �	� 5��65 � � � 4 � .-7 in Table 2.
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1. The algorithm iterates
4

times, i.e. once for each user � � � � � � � 
 
 
 �
4
.

2. For � � , given the schedule and respective cost found for � ��� 
 
 
 � � � � �
, the scheduler computes the

incremental network cost and storage cost for servicing � � via each
��� �	� 
 
 
 ��� � .

3. To service � � in addition to the users � �	� 
 
 
 � � � � �
, the existing schedule has to be updated in one

of the following ways. (1) The resident period of the file at a certain intermediate storage has to be
extended, or (2) another intermediate storage which has not been used in servicing � ��� 
 
 
0� � � �

is
introduced to cache the file. Either situation creates extra storage cost and network cost. or (3) The
request is serviced from VW.

4. All the intermediate storage
� � ��� 
 
 
 � ���

� are considered in a new schedule for servicing � �	� 
 
 
 � � � .
The scheduler computes the incremental cost for each. An updated schedule with the minimum incre-
mental cost would be chosen as the schedule for servicing � �	� 
 
 

� � .

5. Considering the graph structure of the network, there can be more than one path between any pair of
nodes, each of which can be

���
or intermediate storage. If a new intermediate storage is introduced

to cache the file, the scheduler has to compute the network transmission cost of transferring a file to a
new cache.

4.3 Integration of Individual Video Schedules into a Global Schedule

length       user      starting time

Star Wars

     1:00 pm        2:00 pm        3:00 pm       4:00 pm time

2 GB

4 GB

5 GB

Overflow Period

Overflow
Cache Size

: Dial M

: Star Wars

1Hr U1

3 GB U2

Dial M
1 hr

2.5 GB 3:00 pm

3:00 pm

1:00 pm

U3

U4

2:00 pm

Figure 7: Change of available space at Intermediate Storage

It is possible that one or more intermediate storages are over-committed during certain time intervals when
the individual schedules are integrated. Fig. 7 illustrates this situation, where intermediate storage is over-
committed during the interval [1:30 pm, 2:40 pm] approximately. We call this situation Storage Overflow.
In the Storage Overflow situation, the scheduler has to re-schedule some of the files involved in the overflow
so that the file does not reside at the intermediate storage during the overflow period. Possible re-scheduling
strategies are to supply some videos directly from VW or from the nearest intermediate storage that stores
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Figure 8: Integrated schedule and respective storage requirement

them. Specifically, the following decisions should be made for each storage overflow situation: (1) Which
video(s) are selected as victims? and (2) For each victim to be rescheduled, how to compute the new
schedule for victim?.

Victim is a file that is selected to be re-scheduled. In most cases rescheduling entails the additional cost.
However, we cannot exclude the case in which less expensive schedule is found as a result of rescheduling.
This is because the schedule for victim

� � � ) + � � is computed via a greedy heuristic in the first phase, there
can exist a less expensive schedule for

� � � ) + � � . An important goal of handling storage overflow is to resolve
the storage overflow with least possible cost increase in the scheduling which is incurred as a result of
re-scheduling.

5 Handling Storage Overflow

5.1 Detection of Storage Overflow

Storage overflow
����� +�� �
	�� is identified by its location -

� � � and the time interval 
 � during which the over-
flow occurs. The scheduler maintains information about the available space at the intermediate storages.
Analyzing this information, namely the storage requirement and the storage availability, the video sched-
uler detects all storage overflow situations. We define Overflow Set(

� � � � 
 � ) as the set of file residency
information

� �
’s which are involved in

��� � +�� ��	�� . Fig. 8 illustrates the storage space requirement of the
integrated video schedules at the intermediate storage. For the sake of simplicity, Fig. 8 does not show the
gradual decrease in the storage requirement at the end of each stay. In Fig. 8, there are two distinct storage
overflow situations, namely in intervals 
 � � and 
 � � . The two overflow sets are:

� 6 �	� 4 4 ��� � �	� .�
 � ��� ��� 7
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=
�

( 3 �
, [
� �

,
� �

]), ( 3 �
, [
� �

,
� �

]), ( 3 � , [
�
� ,
�
� ]), ( 3 � , [

� � , � � ]), ( 3 �
, [
� �

,
� �

]) � where 
 � � = [
� � , � �

]
and

� 6 ��� 4 4 � � � ����.�
 � � � ��� 7 =
�
( 3�� , [

� � , � � ]), ( 3�� , [
� � , � � ]), ( 3�� , [

� � , � � ]) � where 
 � � = / � � � � � 2 .

5.2 Victim Selection

����� +�� �
	�� is resolved by re-computing the service schedule for some of the files in
� 6 �	� 4 4 ��� � �	� ( 
 � , ��� � ).

In re-computing the service schedule of
� � �

, server takes into account additional constraints in obtaining the
new schedule

� ���	�� ! � . The additional constraints are that
� � �

is not allowed to be cached at
��� � during 
 �

and also the server considers the currently available space at the other intermediate storages. In Individual
Video Scheduling phase, the server does not consider the space limitation of the intermediate storage. As a
result of imposing additional constraints, i.e. space availability, possible caching site of file

�
is restricted to

the intermediate storage with sufficient space. Let
� �
���� .�
 � � � � � 7 be the schedule obtained by rescheduling

file
�

with respect to the constraints .�
 � � � � � 7 . In selecting a victim, the scheduler needs to consider the
overhead cost of rescheduling and respective improvement over overflow situation.

5.2.1 Overhead Cost

In resolving
����� +�� �
	�� , there can be more than one choice for victim. Thus, selecting a victim with mini-

mum cost increase is an important factor to obtain an efficient schedule. When more than one files need to be
rescheduled to resolve

��� � +�� �
	�� , the total number of choices for a set of victims is bounded by the number of
subsets of Overflow Set( 
 � � ��� � ), i.e.

�
� � � � ' 1 
 � � 	
�
+�� � +�� ��	���� � . To help understanding, we would like to visu-

alize the complexity of victim selection using the example in Fig. 8. Consider the set
� 6 ��� 4 4 � � � �	� .�
 � � 7

in Fig. 8. Rescheduling of
� 3 �	� 3 � � resolves the overflow, as does the rescheduling of

� 3 � � . The cost
increase which is entailed as a result of rescheduling file

� � �
with respect to 
 � and

� � � is the overhead cost,� . �
�
���� ! � .�
 � � � � � 7*7 � � . � � ! � 7 . If the overhead cost is the same for all video files regardless of length and

size, it is desirable to reschedule as few video files as possible. However, there are various factors such as
file size, a set of user requests for the file, etc., which determine the overhead cost.

5.2.2 Metrics for Effective Improvement

Overhead cost alone is not sufficient information to select a victim. The purpose of rescheduling is to
improve the overflow situation, i.e. reduction in the overflow interval or reduction in the worst case space
requirement during the overflow interval. Thus, improvement in the overflow situation can be defined along
the domain of time, of disk space or of space-time product. In selecting a victim, the overhead cost of
rescheduling and respective improvement needs to be considered. Let � � +�� ��	���� ) � denote the improvement on����� +�� �
	�� accomplished by rescheduling file

� � �
with respect to 
 � and

� � � . We define heat, � � +�� �
	�� � ) � as
the improvement per overhead cost of rescheduling file

� � �
with respect to

����� +�� �
	�� . Heat is defined as in
Eq. 5.

� � +�� �
	�� .
� � 7 � � � +�� �
	�� .

� � 7� . �
���	�� ! � .�
 � � ��� � �
� � 7*7 � � . � � ! � 7 (5)
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Heat is used as the selection criterion for victim. A file with a larger heat means that its rescheduling
accomplishes better improvement with the same cost increase and thus is preferred for rescheduling in
resolving an overflow situations. To determine better improvement, metrics for improvement has to be
defined beforehand. There are a number of metrics for � � +�� �
	�� .

� � 7 , i.e. time, space, or time-space product.
Each of the metrics have different interpretation of improvement and hence different file can be selected
as victim under different metrics. We describe four metrics for heat in greater detail in section 5.3. and
compare the performance through extensive simulation.

5.2.3 Rescheduling of a file

The file transfer routes to various intermediate storages form a tree structure, as shown in Fig. 9, which
is based on the schedule in Fig. 4. In Fig. 9, solid horizontal lines represent the residency of the file in
the respective intermediate storage and dashed vertical lines represent the network transfer route. During
residency at an intermediate storage, the file is serviced to one or more users who requested it. It is not
possible for two different dashed lines to have the same horizontal solid line segment as a sink, and hence
the graph forms a tree structure. The rescheduling of a file

�
to resolve overflow

��� � +�� ��	�� is to re-compute
the service schedule

�
, given that a solid horizontal line at

� � � during 
 � is not allowed for file
�
.

VW

IS2

IS9

IS8

IS7IS5

IS6

IS4

IS1

IS3

1:00 2:00 4:003:00 5:00 7:00 8:006:00

: Duration of the file stay ( Storage Cost)

: Transfer of the file ( Network Cost)

Figure 9: Service schedule of a file

5.3 Storage Overflow Resolution Algorithm

Algorithm in Table 3 depicts the skeleton algorithm for storage overflow resolution problem.
��� � � solve()

in Table 3 takes service schedule
�

, information about intermediate storages, which includes the overflow
sets, storage usage information, and storage capacity as input. Network rate ��
������ and storage rate 	 
������
are globally available.

�
is a service schedule obtained from the individual video scheduling phase. Let
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1:
� 8

: set of intermediate storages ;
2:

EGF �$��H�I�J)L � �#� : set of storage overflows ;
3:

EGF �$��H�I�J)L � �#��� ����. � : set of storage overflows at
����.

;
4:

8 2 � 9 , 8 Q 2�� : Service Schedule ;
5:

8�� 0��
solve(

8 , � 8 ) �
6: Resolved = False ;
7: While ( Resolved != TRUE) �
8: For all

����. � � 8 �
9: For all

EGF �#�
H�I�J)L � �$�M��?B��, ��� . � � EGF �$�
H�IKJ)L � �$�M� ��� . � �
10: For all % � � EGF �$��H�I�J)L � �$�M�@?A��, ����. � �
11:

8�Q 2�� = ReflectiveGreedy( ?B��, ����. ,c% � ) ;
12: heat = ComputeHeat(

8 � _ X , 8 Q 2�� ) ;
13: If (heat � minheat) �
14: heat = minheat ;
15:

8 2 � 9�	 8 Q 2�� ;
16:

F *>%��>*�/ 	 * [�� ;
17:

2
18:

2
19:

2
20:

2
21:

8�
 � W@Q � 2 	 8 2 � 9 ;
22: Resolved = True ;
23: For all

����. � � 8 �
24: UpdateStorageUsage(

8 2 � 9 ) ;
25: Resolved = Resolved � ( [ DetectStorageOverflow(

��� .
)

26:
2

27:
2

28:
2

Table 3: pseudo code for
� � � � solve(SvcSchedule, C, Overflow Set)
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� ������ ! � .�
 � � � � � 7 be the schedule for file
� � �

obtained with the constraint that file
� �

is not allowed to stay at� � � during 
 � . In most cases, changes to
� � ! � by rescheduling results in an increase in cost for file

� � �
i.e.� . � � ! � .�
 � � ��� � 7*7 � � . � � ! � 7 . This is due to the fact that rescheduling the video with storage constraints

causes the video to be delivered to the user in a less efficient way than in the previous service schedule, re-
sulting in an unavoidable increase in service cost. However, since the schedule

� � ! � is obtained via heuristic,
less expensive schedule can be found as a result of resolving overflow under a certain circumstance. Ac-
cording to our experiment, under various conditions of storage capacity, network cost, storage cost, and user
access patterns, in 1.2% of all situations the service schedule actually becomes less expensive after storage
overflow resolution. Let us define

� 	 ����� as a service schedule obtained as a result of storage overflow
resolution on schedule

�
. The increase in the total service of cost is


��$� 5 � � � . � 	 ����� 7 � � . � 7 � (6)

� 	 ����� is a new set of video schedules which resulted from the
� � � � 5 � 4 6 � () algorithm. The ultimate

objective in the Storage Overflow Resolution phase is to minimize 
��$� 5 � .
For each iteration of the outermost while loop (line 7 - 28) of SORP solve() in Table 3, SORP solve

examines all residency information
� �

which it is involved in one of the overflows. SORP solve() computes
the new service schedule for the respective video file

� ���	�� ! � .�
 � � ��� � 7 for file
� � �

in
� �

and computes the
effective improvement of the rescheduling. The file with largest effective improvement is chosen as victim
in each iteration of 7 - 28 while loop.

We introduce heat as a criterion for victim selection in section 5.2. The actual improvement accom-
plished over the

����� +�� �
	�� as a result of rescheduling file
� � �

may not be directly relevant to overhead cost.
For example, rescheduling file

� � �
reduces the length of

��� � +�� �
	�� by 10 minutes with a $40 overhead cost,
while rescheduling file

� � � reduces the length by 20 minutes with an overhead cost of $50. It is not unrea-
sonable to select file

� � � as a victim. In another situation, the rescheduling of file
� � �

improves the overflow
situation by 300 (MByte 
min), and the overhead cost is $ 30. Meanwhile, the improvement of rescheduling
file

� � � is 50 (MBytes 
min) and the overhead cost is $ 25. It may be desirable to select file
� � �

as victim,
especially when more victims need to be rescheduled in addition to rescheduling of file

� � �
or

� � � .

Let 
 � of
����� +�� �
	�� be / � &

� � 1 2 and interval of
� �

be / � &� � � 1� 2 . Rescheduling of
� � �

with respect to
����� +�� �
	��

will reduce the storage requirement over the interval of / �	��
 . � &
� �*&� 7 � �	��
,. � 1

� � 1� � � � ! � 7 2 . � � ! � is the playback
length of file

� � �
. As explained in section 3.2, every caching interval is followed by the playack duration

which also requires the storage space. Let 
 �
be the amortized time-space product which can be improved

by rescheduling a file
� � �

with respect to
��� � +�� �
	�� . Under the continuous time domain, 
 �

can be formu-
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lated as in Eq. 7.


 � � +�� �
	�� � ) � � ������� � + � � +��� � � � � � ����
	 � + � � + �� � 4 ) � . �
7 � � (7)

4 ) � . �
7 � ���
�� 
 5 � � � � ! � if � � � 1�� 
 5 � � � � ! � . � � + � +���� � � � 7 Otherwise
(8)

� � �� 
 � � 4 � 1� � � &��� � � ! �+ ���� + ��� � � � Otherwise
(9)

4 ) � . �
7 in Eq. (8) computes the storage space requirement at each time � based on the storage cost model
in section 3.2. The maximum amount of disk space required for

� �
depends on whether

� �
is either long

residency or short residency. � in Eq. (9) is a coefficient adjusting the maximum space requirement accord-
ing to Eq. (2) and Eq. (3). We compare four different metrics for heat of rescheduling

� � �
with respect to����� +�� �
	�� . � � +�� �
	�� � ) � �

�
� % . � 1

� �*1� � � � ! � 7 � � ��� . � &
� � &� 7 (10)

� � +�� �
	�� � ) � � �
� % . � 1

� � 1� � � � ! � 7 � � ��� . � &
� � &� 7� . �

���	�� ! � .�
 � � ��� � 7*7 � � . � � ! � 7 (11)

� � +�� �
	�� � ) � � 
 � � +�� �
	�� � ) � (12)

� � +�� �
	�� � ) � � 
 � � +�� ��	���� ) �� . � ���	�� ! � .�
 � � ��� � 7*7 � � . � � ! � 7 (13)

The meaning of heat is per cost improvement obtained as a result of rescheduling
� � �

with respect to����� +�� �
	�� . In Eq. (10) the effective improvement is measured in terms of the length of the improved period.
In Eq. (11), the length of improved period per overhead cost is considered as heat. In Eq. (12) and Eq. (13),
the improvement on amortized time-space product, and the improvement on amortized time-space product
per overhead cost is considered as heat of rescheduling. In the iteration of line 7 - 18 of SORP solve()
algorithm, the file with the largest heat is selected as victim. According to our experiments, Eq. (13) per-
forms best, i.e. generates the least expensive schedule, on the average. Details of the experimental results
are provided in Sec. 6.

5.4 Reflective Greedy Heuristic

The rescheduling algorithm reflective greedy() in line 18 of Table 3 receives a tuple (
� � � 
 � � � � � ) as an

input. It reschedules the file
� � �

of
� �

with the constraint that there is no space available during 
 � at� � � . Rescheduling a file means re-arrange the service delivery of all requests for the file. Different from the
greedy heuristic in individual video scheduling, the Reflective Greedy maintains the space usage information
for the intermediate storages, and does not schedule a video file to the intermediate storage if there is not
sufficient storage capacity available. This is to avoid generating a subsequent overflow situation as a result
of rescheduling. The reflective greedy algorithm with input (

� � � 
 � � � � � ) generates a service schedule for
file

� � �
with the constraint that it is not allowed to be cached at

� � � during 
 � .
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6 Experiment and Results

In this section, we present performance results obtained from simulations under various conditions. Before
describing our experimental results, we first discuss some general information about experiment, including
the performance baseline, performance metrics of interest, and parameter settings.

6.1 General Experiment Information

: Intermediate Storage

:Video Warehouse

Figure 10: Graph Representation of Network and Storage Topology

Fig. 10 illustrates the topology and connection layout of the video warehouse and intermediate storages
from our experiments. There are 20 nodes in total - one video warehouse and 19 intermediate storages.
Each intermediate storage supports the users in its respective neighborhood. For notational simplicity, the
users are omitted in the graph representation in Fig. 10. In our experiment, the number of users in each
neighborhood is 10. Various factors can determine the characteristics of the video service environment.
Among them, we take into account four attributes which affect the service scheduling process and its cost
- the Storage Charging Rate, the Intermediate Storage Size, Network Charging Rate, and the user access
pattern. Table 4 shows the actual values of each attribute used in our experiment. The values of the storage
charging rate and the network charging rate represent values in the arbitrary charging system. In a practical
situation, we can substitute those values for the actual charging rate of the monetary metric.

The scheduler selects the victim with the largest heat value. Depending on the method of computing the
heat, which is formalized in Eq.’s (10), (11), (12), and (13), the scheduler generates several different service
schedules. We compare the efficiency of these four different policies from the aspect of total service cost.
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Attributes Values

Number of available video files 500
Average video file size 3.3 GB

Storage Charging Rate 3, 4, 5, 6, 7, 8 (/
� ��� �*� 
 5 � � )

Intermediate Storage Size 5, 8, 11, 14 (Giga Bytes)

Network Charging Rate 300, 400, 500, 600, 700, 800, 900, 1000 (/
� � � � � )

Access Pattern: Zipf distribution �
� � � � � � � � � � � � � 	 � � � �

Table 4: System Parameters

6.2 Experiment 1: Effect of Network Charging Rate

In this section, we mainly focus on visualizing the effect of the network charging rate. Fig. 11 shows the
relationship between network charging rate and total service cost in four different storage charging rates.
It also plots total service cost in the environment without intermediate storage. The advantage of using
intermediate storage becomes more significant as the network charging rate increases. Srate in Fig. 11
means the storage charging rate. In Fig. 12, the variable is the user access pattern. In the zipf distribution,

� determines the skewness of the user access pattern. Larger � implies a less biased distribution. Under the
same environmental parameters, total service cost increases when the requests are more evenly distributed.
The advantage of intermediate storage is to share a file between users and avoid repeated delivery of the
same video file. When most of the requests are concentrated within a small set of video files, the schedule
can maximize the usage of an intermediate storage. It is observed that the total service cost increases almost
linearly with the network charging rate. This is because in servicing a set of requests, there is unavoidable
network transmissions which cannot be replaced with caching the file in an intermediate storage. With the
less expensive storage charging rate, the total service cost increases more slowly. In Fig. 13 and Fig. 14, the
size of the intermediate storage is increased to 11 GB. With the 11 GB size intermediate storages, there is
less chance of storage overflow, and hence the total service cost can be less expensive than using 5 GB size
intermediate storages.

6.3 Experiment 2: Effect of the Storage Charging Rate

In this experiment, we examine the effect of the storage charging rate. Fig. 15 illustrates the effect of the
storage charging rate on the total service cost. When the storage charging rate is relatively low, the scheduler
tries to avoid repeated delivery and prefers using intermediate storage to delivering the video directly from
the video warehouse. The cost of using intermediate storage dominates the cost of using network in total
service cost in the situation with a low storage charging rate. Hence, the change in the storage charging
rate has significant effect on total service cost. As the storage charging rate increases, the scheduler prefers
repeated network deliveries to making the video residency in the intermediate storage for a longer period of
time. Consequently, the total service cost becomes less sensitive to the increase in the storage charging rate
as the storage charging rate increases. The total service cost curve in Fig. 15 approaches the total service
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Figure 11: Under Different Storage Charging
Rates
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Figure 12: Under Different Access Patterns
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Figure 13: Under Different Storage Charging
Rates
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Figure 14: Under Different Access Pattern
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Figure 15: Storage Charging Rate vs. Total Ser-
vice Cost
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Figure 16: Storage Charging Rate vs. Total Ser-
vice Cost

cost of the network only system as the storage charging rate increases.

Fig. 16 shows the effect of storage charging rate under different network charging rates. It is worth
noting that total service cost increases linearly with the increase of the network charging rate. Meanwhile,
the effect of the increase in the storage charging rate is substantial only when the storage charging rate is low.
This phenomenon arises due to the fact that there are substantial amount of unavoidable network delivery
in the service schedule, e.g. servicing the earliest request for each neighborhood. Of course, this behavior
is not observed if we model the fact that the initial state of intermediate storage at the start of cycle

� � �

is the same as that at the end of cycle
�
. Thus a number of videos are in various intermediate storages to

begin with. We propose to do this in our future work. It is possible that none of the intermediate storage is
used if the storage charging rate is expensive, and there is no mandatory requirement for using intermediate
storage.

Let us examine the vertical distances between each line and curve in Fig. 11 and Fig. 13. In both of the
figure, the change in srate results in shifting the straight line up along the y-axis, with an increase in the
slope of the curve. The vertical distance between each straight line, i.e. the amount of total cost increase
due to the increase in the storage charging rate is small. This implies that the cost for using intermediate
storage in the service schedule is relatively small, compared to the total network cost. If the number of users
in each neighborhood and/or the size of intermediate storage increases, the vertical distance between each
line will become larger. This phenomenon can be observed by comparing Fig. 11 and Fig. 13. , the size of
intermediate storage is 5 Giga Bytes and 11 Giga Bytes, in Fig. 11 and Fig. 13, respectively.

6.4 Experiment 3: Effect of Data Access Pattern

In this experiment, we visualize the effect of data access pattern and the total service cost. We anticipate
that it is more advantageous to build the distributed service environment with the intermediate storage as
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Figure 17: User Access Pattern with zipf distribu-
tion

460000

470000

480000

490000

500000

510000

520000

530000

540000

550000

560000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
o

ta
l 
S

e
rv

ic
e

 C
o

s
t

 alpha value of zipf distribution

srate = 5, nrate = 500

st size = 5 GB
 = 8 GB

 = 11 GB

Figure 18: User access pattern vs. Intermediate
Storage Size

the user requests are concentrated on the small set of video files. The user request is generated using the
zipf distribution. Fig. 17 illustrates the user access pattern under various zipf distributions. Dan et al[DS93]
showed that zipf distribution with �

� � � � � �
approximates the commercial video rental pattern to a rea-

sonable degree. Fig. 18 visualizes the effect of the data access pattern with various sizes of intermediate
storage. As can be observed in Fig. 18, the total service cost increases as the access pattern becomes less
biased. The merit of using intermediate storage is to avoid repeated file delivery to the same location. When
the access pattern gets evenly distributed, the effect of using intermediate storage becomes less significant
and thus total service cost increases. Let us look at the vertical distance between the three graphs in Fig. 18
with storage size is 5GB, 8GB, and 11GB, respectively. The environment with the smaller size intermediate
storage results in more expensive total service cost. With the access pattern becomes more biased, the ver-
tical distance between the graphs becomes larger. It implies that advantage of using larger size intermediate
storage becomes more significant as user access pattern is more skewed.

6.5 Experiment 4: Effect of Intermediate Storage Size

In this experiment, we visualize effect of the intermediate storage size. Service Scheduling Algorithm pre-
sented in this paper is based on the assumption that the intermediate storage does not have sufficient capacity
to hold all the video files requested by the users in its neighborhood. This assumption is not unrealistic, con-
sidering the fact that the average size of the mpeg-2[WG193] compressed video file of 110 minutes exceeds
3 Giga bytes. In Fig. 18, we provide the effect of intermediate storage size and data access pattern. As the

� gets larger, which means the access pattern becomes more evenly distributed over the available files, the
total service cost increases. This is because the schedule cannot make the best use of intermediate storage
if users make requests for different files. Fig. 19 shows the relationship between the storage charging rate
srate and the size of the intermediate storage. When the storage charging rate is relatively low compared
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to the network charging rate, there are larger numbers of storage overflows. Hence, increasing capacity at
the intermediate storage is advisable to minimize service cost, but increasing the capacity beyond a certain
threshold does not improve the service cost. In Fig. 19, it is not necessary to increase the storage capacity
beyond 8 GB when srate = 5. As the storage charing rate increases, the benefit of using larger storage
reduces. This is because the usage of the intermediate storage becomes less dominant as the storage cost
increases. The analysis on this metric provides an important guide line in determining the actual size of
the intermediate storage since the intermediate storage larger than a certain size does not help to reduce the
service cost.
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Figure 19: Intermediate Storage Size and srate

6.6 Experiment 5: Computing heat and Cost Increase

Heat is a criteria for selecting a victim, which is equivalent to the improvement per overhead cost of
rescheduling. Rescheduling should be viewed from two aspects - cost and benefit. The cost is the cost
of rescheduling a victim and the benefit determines the improvement in the overflow situation. By com-
bining these two factors - cost and benefit, we can obtain the effective cost of rescheduling. We provided
four different ways of computing heat in Eq.’s (10), (11), (12), and (13). We compare the efficiency of
schedules obtained under four different heat metrics. In 98% of 622 different circumstances, Eq. (11) or
Eq. (13) generated the best results, and thus we provide the comparison between the two. Table 5 shows
the performance of each metric. The experiments are performed under 785 different combinations of the
network charging rate, storage charging rate, size of the intermediate storage and user access pattern. Un-
der some situations, e.g. large intermediate storage capacity, or an expensive network charging rate, the
scheduler generates an overflow free schedule at the individual scheduling phase. There are also the situa-
tions where method 2 in Eq. (11) and method 4 in Eq. (13) generate the same output result with the same
cost. Overflow resolution makes the service schedule less efficient, which leads to an increase in the ser-
vice cost. In our experiments,

� � ��������� � � � � � �� � � � is 12% on the average, and 34% in the worst case. Also,
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Total Number of Cases 785

Service cost increase due to overflow resolution 622

Method 2 in Eq.( 11) 395 out of 622 ( 63 %)
Method 4 in Eq.( 13) 437 out of 622 (70 %)

Method 2 or Method 4 614 out of 622 (98%)

Table 5: Performance of the each method

find video schedule . � � � % ����� � �05 ����� ��7 in Table 2 is known to generate the schedule for file
�

within the per-
formance bound of 15%[PRR94]. Empirically, the resulting schedule

� 	 � � � is hence within the bound of
30% from the optimal solution on the average.

7 Concluding Remarks and Future Direction

On-line digital delivery of multimedia services makes demands upon the current state of the art of computer
technology. Though its application area is expanding rapidly, the high cost of service provisioning has been
serious impediment to its widespread usage. In an effort to analyze the costs of service provisioning, we have
developed a model of a distributed infrastructure which has a video warehouse and intermediate storages
connected via a high speed communication network. In the proposed environment, video delivery service
can be provided to the user either from an intermediate storage or from a video warehouse. Unlike in a non-
continous media application, the duration or bandwidth of the service needs to be considered in measuring
the resource requirements of the continuous media service. In this work, we developed a comprehensive
cost model for storage and networks which elaborately captures the resource requirement of supporting a
given set of continous media service. We defined a Video-On-Reservation service where a user reserves a
service in advance. With the combination of a VOR service model and a distributed environment with a video
warehouse and intermediate storages, system resources such as disk space and network bandwidth can be
used in an efficient way via off-line computing and thus can accommodate more video streams and consume
less storage or network resources. The algorithm is focused on making the best use of VOR property.
However, with minor modification, Individual Video Scheduling algorithm with the storage constraints can
also be applied to determine the delivery route and caching information of VOD request. The scheduler at a
video warehouse computes a schedule which determines the file caching and network transfer of the video
files to service the users’ requests. To provide a video delivery in a cost-effective way, the video scheduler
should find a video schedule that consumes as few system resources as possible. We proposed a two stage
algorithm for the video scheduler - (1) Individual Video Scheduling, and (2) Storage Overflow Resolution.
With the algorithm proposed in this work, the cost of service schedule

� 	 � � � is within 30% performance
bound on the average from the optimal solution. Through the extensive simulation, we visualize the effect
of the charging rate of the resources and/or user access pattern on the total service cost. These relationships
should be carefully examined in building or prototyping practical information service infrastructure where
the parameters are tailored to fit the particular needs. In handling the storage overflow, allowing the user to
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specify the starting time in terms of interval can help to improve the overflow situation. As future extension
of the work, we plan to extend our approach to resolve the bandwidth constraints of the intermediate storages
and communication network. We hope our design and its heuristic algorithm can serve as useful guideline
for the design of future multimedia service provisioning.
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A Proof of NP-completeness

Theorem 1 Cache Overflow problem is NP-complete problem.

Proof K-ary Knapsack � Cache Overflow problem. Hence, Cache Overflow is NP problem.
�

Definition 2 K-ary Knapsack problem: There are a finite set of items U and K knapsacks � � � � � �������,� � �
whose sizes are � ��� � �
��������� � � . s(u) is a size of ��� � . v(u) is a value of ��� � . Find the collection of
set � � ’s s.t. � ��� � , and � ��� � � �	� � � � �

and such that
� �� � � ��

��� � 6 . � 7 is as large as possible and� 

��� � 5 . � 7 � � � .

The K-ary knapsack problem is NP-complete. Since this is a well-known problem, we will not mention
the details of the K-ary knapsack problem itself.

Theorem 2 K-ary knapsack problem � Cache Overflow problem.

Proof. There exists a polynomial transformation function
4

that transforms the K-ary knapsack problem to
the Cache Overflow problem.

Elements of Knapsack problem

� a set of item U

� Knapsacks � � ’s,
� � � �����������

. � � is size of � � .
� v(u) : value of item u � U.

� s(u) : size of item u � U.

� Solution : collection of � � ’s

From the elements of the knapsack problem, we can build a cache overflow problem.

Elements of the Cache Overflow problem

� a set of videos = U

� a set of video caches � � ’s,
� � � �������,���

. capacity( � � )= � � .
� one video warehouse ���

32



N1                          N2                          N3                        N4

size     :  B1                           B2                          B3                         B4

N1 N2 N3 N4

Cache Size : B1                  B2                    B3                     B4

Network Cost

       $1 per minutes

Free

N0

Movieware house

Movie caches

transformation of environment

Knapsacks:

Layout of cache&

Network

Figure 20: Transformation from K-ary Knapsack problem to Cache Overflow problem

� the length of the video u = v(u) minutes which determines the network transmission cost.

� the size of the video u = s(u) which determines the storage cost.

� Network topology : completely connected

� Every video should be started at the same time.

� storage cost is 0 for all � � � � � � �����������
.

� network cost : For each network edge in the layouts, there is a related cost for it. nrate(i,j) is the cost
of edge(i,j) per minute. For network edge(i,j),

– if i = 0 or j = 0, nrate(i,j) = 1

– otherwise, nrate(i,j) = 0

� Solution : Video schedule � � ’s � � � �����������
such that if u ��� � , then video u should be migrated to

video cache � � for showing. If video u
�� � �� � �

, then u
� % � � .

We can easily see that building a cache overflow problem from the k-ary knapsack problem takes poly-
nomial time. The solution of the knapsack problem is also a solution of the cache overflow problem, and
vice versa. Hence, the cache overflow problem is NP-complete.

�
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Lemma 1 A solution of the K-ary knapsack problem � � ’s is also a solution for the cache overflow problem
� � ’s � � � �������,���

and vice versa.

Proof (1)Knapsack problem � Cache Overflow problem
The video cache for each video is uniquely defined from � � ������� �

� � for all videos � � � . If the
resulting video schedule is not minimum, there is a video � � � ��� �

and ��� � � � such that exchange
of the them will result in a smaller video delivery cost.

video delivery cost of � �
storage cost

� (unit network cost)*(length of video) (14)

� ���
� 4�� � 4 � 6 �	��� �$� 5 � � �

��
�	� 6 . � 7 (15)

Hence we can get the following relationships between the solution of the knapsack problem and the
video delivery problem.

� ����� 4�� � 4 � 6 ��� � � � 5 � � �


�
� 6 . � 7 � ��

� � � �

 � � � � 6 . � 7 (16)

Hence, if it is possible to decrease the Total Delivery Cost by exchanging u and u’, we can increase
the total profit for the K-ary knapsack problem by exchanging � and �
� .
(2)Cache Overflow problem � Knapsack Problem
It is apparent from the equation 16.

�
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