
Adaptive Disk Scheduling Algorithms for Video

Servers �

Wonjun Lee and Jaideep Srivastava Won-Ho Lee

Department of Computer Science & Engineering Department of Electronic Engineering

University of Minnesota at Minneapolis Korea University

Minneapolis, MN 55455 Seoul, Korea

fWJLEEjSRIVASTAg@CS.UMN.EDU LWH@DALI.KOREA.AC.KR

Abstract

Soft-real time applications, such as continuous media

(CM) systems, have an important property, namely,

they allow for graceful adaptation of the application

Quality-of-Service (QoS), and therefore are able to

have acceptable performance with reduced resource

utilization. This can be used by the admission con-

trol process to decide if an application can be admit-

ted, even if the resource is congested. In this paper,

we present a Soft-QoS framework for Continuous Me-

dia servers, which provides a dynamic and adaptive

admission control and scheduling algorithm. Using

our policy, we could increase the number of simulta-

neously running clients that could be supported and

could ensure a good response ratio and better resource

utilization under heavy tra�c requirements. The ob-

servations and �ndings from the model are validated

with simulation studies.

Keywords: Admission Control and Schedul-
ing, Quality of Service, Video Server, Continuous
Media

1 Introduction

1.1 Motivation

The goal of conventional disk scheduling policies
is to reduce the cost of seek operations and to

�This work is supported by Army Research Lab num-
ber DA/DAKF11-98-9-0359 to the University of Min-
nesota.

achieve a high throughput, while providing fair
access to every process that seeks its services. In
contrast, the goal of disk scheduling for continu-
ous media (CM) is to meet the deadlines of the
periodic I/O requests generated by the stream
manager to meet rate requirements. An addi-
tional goal is to minimize bu�er requirements.
In order to ensure continuous and stringent real-
time constraints of video delivery in CM servers
[4, 13], several factors such as disk bandwidth,
bu�er capacity, network bandwidth, etc., should
be considered carefully and should be handled ef-
�ciently. The reservations of these resource fac-
tors are required for supporting an acceptable
level of display quality and for providing on-time
delivery constraints. In particular, disk band-
width constraint may be the most important fac-
tor, given that the I/O bandwidth reserved for
each stream on disk depends on latency over-
head time, transfer time, de�ned cycle length,
and contention of multiple streams. Hence, we
should be able to guarantee that the request of
each stream can be fairly supported with good
disk utilization and server cost-performance. A
video stream being viewed requires timely deliv-
ery of data, but it is able to tolerate some loss
of the data for small amounts of time. Thus,
an acceptable method of degrading service qual-
ity is simply to reduce the requested resources of
CM applications. The idea of achieving higher
utilization by introducing soft-QoS is not novel
in the networking �eld. There are several ref-
erences [2, 11] that study soft-QoS provision in

broadband networks for video tra�c and its im-
pact on network utilization. The problem here is
dual (i.e., admission control and disk I/O band-
width management in CM server systems) to
that of network call admission control and dy-
namic bandwidth management.

To handle these issues in CM server systems,
we propose a dynamic and adaptive admission
control strategy which achieves better perfor-
mance than the conventional greedy admission
control strategies generally used for CM servers.
It recognizes that CM (e.g., video) applications
can tolerate certain variations on QoS parame-
ters. It develops an algorithm for sharing pro-
cessing resources at the server to share available
resources e�ectively among contending streams.
The proposed algorithm provisions are for recla-
mation (i.e., scheduler-initiated negotiation) to
reallocate resources among streams to improve
overall the QoS.

1.2 Research Contributions

According to the evaluation of a human's per-
ception on video and audio [20], up to 23% of
aggregate video loss and 21% of aggregate au-
dio loss are tolerable. The acceptable values for
consecutive loss of both video and audio are ap-
proximately 2 Logical Data Units (LDU). Up to
about 20% of video and 7% of audio rate varia-
tions are tolerable. Henceforth, using this fact,
we could restrict and steal some resources of run-
ning streams, and give them to the other new
input requests, based on the logged information
and the status of remaining resources given by
our admission control algorithm, without causing
any perceptible changes for users. It is a reason-
able requirement for the CM server to guarantee
the given QoS parameters. When the load of
CM server is low, it is possible to meet this re-
quirement. But when the number of concurrent
CM streams increases in the CM server, it be-
comes di�cult to guarantee all the QoS parame-
ters. Given certain resources, we want to support
as many CM streams whose QoS parameters are
all acceptable as possible. Furthermore, as more
and more clients require CM streams, the QoS
of CM server will degrade. It is a good choice

to make it degrade gracefully. To guarantee that
each client is served with some reasonable qual-
ity, admission control is also necessary.

In this paper, we present a dynamic/adaptive
admission control strategy for providing a fair
scheduling and better performance for video
streaming. It e�ciently services multiple clients
simultaneously and satis�es the real-time re-
quirement for continuous delivery of video
streaming at speci�ed bandwidths in distributed
environments. This new stream scheduler pro-
vides a pro�cient admission control functional-
ity which can optimize disk utilization with a
good response ratio for the requests of clients;
in particular, under heavy loaded tra�c environ-
ments. It still presents similar levels of stream
qualities (how well the requested rate is attained
in CM servers) compared to the basic greedy ad-
mission control algorithm. We will present the
comparison of the simulation result on the be-
havior of conventional greedy admission control
mechanisms with that of our admission control
and scheduling algorithm.

The rest of this paper is organized as follows.
In Section 2, we briey describe an assumed
CM server architecture and the admission con-
trol constraints (I/O bandwidth requirement and
bu�er constraint). The detailed description of
our admission control and scheduling algorithm
is presented in Section 3. Section 4 gives the
quantitative results of experimental evaluations,
and describes experimental designs and param-
eters. Section 5 describes the related work, and
�nally concluding remarks and on-going work ap-
pear in Section 6.

2 Architecture of CM Server

The CM server system is a typical client/server
application. It is based on several �le systems:
for example, the Presto File System (PFS) [10]
and the Unix �le system (UFS). The core part of
the CM server involves the network manager, the
QoS manager, I/O managers, and proxy servers.
These sub-modules in the CM server are threads
running in a single process More details of the
architecture of CM server system where the ad-

mission decision is made, can be found in [7, 9].
The admission control for input CM streams is
managed by the QoS Manager, which is com-
posed of the Admission Controller and the QoS
Handler. The Admission Controller provides two
constraint tests: (1) I/O bandwidth test; and
(2) available bu�er test. Each request (stream)
arrives with some rate value (e.g., playing-back
rate : i.e., frames per second) and the Admission
Controller determines whether to admit it or not.
The QoS Handler takes care of data rate handling
according to a rate input parameter provided by
the client's request. In case the playing time gets
delayed due to some kind of system overhead,
this module will drop some frames properly so
as to keep the data rate.

2.1 Basic Conditions of Admission

Control

Every time either (1) a new client's request
arrives; (2) a rate control operation (such as
Set Rate, Pause, Resume, and Fast Forward) is
received; (3) the playing of a running stream is
over; or (4) when the resources in the reserves are
not used for some time, the following constraint
must be checked for admission control require-
ment.

�
ts +

n+1X
i=1

d
Tsvc � ri

b
e � tr

�
+

n+1X
i=1

Tsvc � ri
R

� Tsvc (1)

i.e., latency overhead time(= seek time + rotational
latency) + transfer time � cycle length

where, ts: seek time (msec); Tsvc: cycle length (msec);

ri: consumption rate (Byte/msec); b: disk block size

(Byte); tr: rotation time (msec); and R: transfer rate

(Byte/msec).

The �rst element (ts) explains that the maxi-
mum disk seek latency overhead in a cycle. The
second component shows the sum of each rota-
tional latency incurred for retrieving each disk
block (for each request ri) in a given cycle length
(Tsvc). The last component describes the time
to transfer ri during a cycle. Finally, the overall
time for disk access time in a given cycle length
must be done in the service cycle length (Tsvc).

Since we only consider the I/O bandwidth con-
straint in this paper, we do not present the de-
tails of the constraint of bu�er requirement here.

3 Adaptive Disk Scheduling

Most of the existing admission control ap-
proaches are purely greedy strategy in the sense
that a new application (video stream) can be ac-
cepted only if the server could give the client
all the requested resources [1, 18]. These ap-
proaches are too conservative and admit too few
streams, thereby under-utilizing the server re-
sources. Although probabilistic methods exist to
amortize the cost of this failure, this is undesir-
able in general [12].
We propose an enhanced admission control al-

gorithm (RAC : Reserve-based Admission Con-
trol Algorithm) in that it is capable of re-
adjusting resources according to the amount of
remaining resources. The key idea here is to
assign a portion of the resources as the re-
serves, and when the applications start to dip
into the reserves, another strategy is invoked. In
heavy loaded tra�c (when a fairly large num-
ber of client requests want services; for exam-
ple, the total disk bandwidth utilization gets
over 70%), if the remaining available resources
become smaller than some value (threshold:
Treserve), we assign only some portion of the re-
quested resources to the new requests according
to the done ratio and available resources. For
the degraded streams to adapt based on the avail-
ability of resource, resource-negotiation is re-
quired. Resource-negotiation (reclamation) oc-
curs under these circumstances: (1) when a run-
ning request returns the resources back to the
system; (2) when set rate video functions, such
as Fast Forward, are received, or (3) after some
period elapses without any further resources be-
ing used. Table 1 describes the attributes used
in the algorithms.

3.1 RAC Algorithm

The key advantage of the basic greedy strategy
is that it is simple. However, due to the other
shortcomings of basic greedy admission control

Attributes Descriptions

si stream i

qi initially requested resource of si
vi currently serviced resource of si : = qi ? di

RS set of all the running streams :
S

i
si,

where fsi j Fmin;i < di � 1:0g

DS set of degraded streams : RS �
S

i
si,

where fsi j di = 1:0g
smin stream j of which dj is smallest in DS:

smin = fsj j 8sj;sk2DS
dj � dkg

m number of streams in RS

done ratio ratio of serviced resource to requested resource
for a stream

remaining ratio ratio of resource yet serviced
to requested resource
for a stream: (= 1:0 � done ratio)

remaining ratei amount of resource which is yet serviced
in stream i :
(= qi � vi)

sum rem ratio total sum of remaining ratio of
degraded streams :P

k
ek , where sk 2 DS

MIN FRACT minimum amount of resource to be assigned
for a stream

MIN RESERVE minimum amount of reserve which must be
at least maintained in DRA mode

di done ratio of si
ei remaining ratio of si : (= 1:0 � di)
Fmin;i MIN FRACT of si
Ttotal total available resources initially given
Treserve amount of resources assigned to the reserve

Tfree res available resources in Reserve

Tfree non res available resources outside Reserve

Talloc allocated resources to the requesting stream

Tavail available resources to assign:
(= Ttotal � Tused)

Tused total resources currently used :
P

i
vi,

where si 2 RS

	(Tfree res) heuristic function for reserve assignment in
Admission Test :

e.g.
Tfree res

k
,

where k = k
(Tused�Treserve)�k2
1

�(Tfree res) heuristic function for reserve assignment on
Close of streams :

e.g.
Tfree res

k
,

where k = k3 � (Tused � Treserve) + 1
congestBit bit ag to indicate congested state :n

1 if Tused > Ttotal � Treserve
0 otherwise

SU(t) total system utilization de�ned byP
k
dk,

where 8ksk 2 RS at time t

QT (t) total video quality de�ned by SU(t)=m at time t

Table 1: Attributes Used in Algorithm

algorithms, we should be able to think of an-
other strategy to allow more streams to run con-
currently in the continuous media servers by de-
grading the requested quality of newly arriving
streams and by adapting the returned resources
to these streams. Given the average seek time
(ts), cycle length (Tsvc), disk block size (b), ro-
tation time (tr), and disk transfer rate (R), the
consumption rate of each client request (qi) is a
variable in the I/O bandwidth constraint equa-
tion (Eq. 1). We initialize the total available
rate (Tavail) with Tsvc(= Ttotal), and set Treserve
(the threshold value for criteria to check con-
gested bit). Initially the congested bit is 0 (not
congested). The resource (here I/O bandwidth)
is congested if the resource usage (Tused) is
more than (Tsvc - Treserve). We can set the
Treserve amount of resources for admitting more
requests at a reduced quality. Here, Tusage +
Tavail = Tsvc. That is, the congested bit is set
(= 1) only when Tavail becomes smaller than
Treserve; otherwise, the basic I/O bandwidth con-
straint is just applied (i.e., the new request is
admitted without being degraded). Under the
congested bit being set, we restrict the amount
of assignment of resources to the new request
because there is no su�cient resource remain-
ing any longer). We explain the details in the
following:

1. On adding the request qi, if the resource remains
uncongested, then admit it with no degradation.

Talloc = qi.

2. Let the current usage be Tused; then, adding the
application qi will increase the usage to (Tnew =
Tused+qi). If (Tnew � Tsvc�Treserve); then, adding
qi will make the resource congested. When the re-
source gets congested, we have to dip into the re-
sources.

Tfree res =max(0,Tsvc � Treserve � Tused).
This is the unused resource outside the reserves.
Let Tavail be the amount of resources in the reserves.

Tfree res = min(Treserve,(Tsvc � Tused)).
The new application is allocated, and then

Talloc = Tfree res + min((qi � Tfree res),
	(Tfree res)).
That is, we allocate the resources that are outside
the reserves and, in addition, we give a maximum
	(Tfree res) of the resources in the reserves. 	(:)
is a function of Tfree res and returns an appropriate
amount of resources according to Tfree res.

3. If 	(Tfree res) is too small (in this case, we had
better not support the new request because display
quality may be too poor), we simply reject the re-
quest.

4. If the running stream (sk) is over, then the resource
vi is reclaimed. We return the resource occupied by
the stream and adjust (if required) the resource al-
location of streams not being fully serviced. Here
the unused resource is allocated to applications such
that the least serviced streams could get the re-
turned resource �rst.

5. Negotiation (Reclamation) algorithm: we
have implemented two heuristic-based methods
(DRA and RWR) and tested their performance.

6. Dynamic Reserve Adaptation (DRA) : this is in-
voked only if there are applications that need re-
sources and do not have them. On departure of
streams, DRA returns the assigned resources to
the leaving streams (qi) back to the available re-
source pool and re-calculates the new Tavail using
the total available resource (i.e. old Tavail + qi).
Among the requests that are not fully serviced yet,
we select a request (smin) from the queue (DS),
whose done ratio is the smallest �rst, and assign
the proper resource to the request. The maximum
�(Tfree res)-rule applies here.

Assign Talloc = min (�(Tfree res), remain-
ing ratemin) to the selected request (smin).
The loop continues until there is no more available
resource to assign or Talloc is too small to assign.

7. Reclamation within Returned Reserve (RWR) :
this is a similar method to the Dynamic Reserve
Adaptation method, but the di�erence is that it
redistributes the only resources returned from the
leaving streams (vi). In DRA , we used Tavail
(instead of vi) for reclamation. The Talloc per
stream is calculated according to the ratio of
remaining ratio to sum remaining ratio.

Talloc = Tavail �
(remaining ratiok=sum remaining ratio)
The key idea here is not to touch the reserves, but
to utilize the only returned resource due to the
departure of streams. We will validate the better
performance of this policy compared to that of
DRA .

8. When the resources in the reserves are not used for
a long time, some of it is reclaimed. For every k
period, if there is no request to the reserve, then we
release some amount of the reserve to be reclaimed.
This is kind of a reserve adaptation method.

We present the algorithm (Reserve-based
Admission Control and Scheduling Algorithm
(RAC)) here.

Algorithm 1 RAC (Treserve; event Ei)

.Reserves-based Admission Control

. Ei = f(START; qi); (CLOSE; vi)g
1 switch EVENT of
2 case "START" :
3 if (! congested) then

. Admit the application with no degradation
4 Talloc qi;
5 Tused Tused + qi;
6 else /* congested */
7 if ((Tfree res) > MIN FRACT) then

. Admit at a lower quality
8 Talloc min((Tfree res); qi) /* 2 (0; qi)

*/
9 Tused Tused + Talloc;
10 degraded = 1;
11 else

. too small to admit
12 Reject si;
13 case "CLOSE" :

. with parameters of appl inst ID
14 if (degraded)

. add back resource vi to our count
15 Tused = Tused � vi;
16 switch MODE of
17 case "DRA" :

. resource vi+Tavail is reclaimed to distribute
it to the degraded application instances

18 Tavail Ttotal � Tused;
19 while (1) do
20 smin Select a request of which done ratio

is the smallest;
21 if (�(Tfree res) > MIN RESERVE) then
22 Talloc = min (�(Tfree res), remain-

ing ratemin);
23 Tused Tused - Talloc;
24 end while

25 case "RWR" :
. resource vi is reclaimed to distribute it to
the degraded application instances

26 Tavail = vi;
27 sum remaining ratio =

P
k
remaining ratiok ;

28 for (each degraded application k) do
29 Talloc = Tavail �

(remaining ratiok=sum remaining ratio);
30 Tused Tused � Talloc;
31 end for

32 end switch

33 end switch

4 Experimental Evaluation

We performed extensive simulation to validate
our admission control and scheduling algorithm.
In this section, we present the performance re-
sults obtained from simulations under the var-
ious load conditions. For results presented in
this section, we simulated an environment: i.e.,
a Sun Ultra Sparcstation with a Seagate Bar-
racuda 4GB disk (ST34371N). The details of the
simulation parameters can be found in [8].

4.1 Experiment Design

We simulate the situation where the applications
with soft-QoS requirements arrive at the system
in an arbitrary order. The applications also come
with a play-out rate (which maps into an amount
of required resource), depending on the user pro-
�le and the data content, which is a value of the
data rate parameters. The applications arrive
based on a Poisson process with an average inter-
arrival rate (�). The duration of the applica-
tions is described using a Gaussian process with
the mean (�d) and the standard deviation (�d)
of the distribution. The admission control and
scheduling algorithm is tried on each one of the
application tra�c traces. We measure the follow-
ing: (1) Accumulated number of admitted streams over

time; (2) Total system utilization; (3) Total quality; and

(4) Admission ratio. For our simulation, we made
various application load tra�c sequences and dif-
ferent application load conditions, and chose the
following two distributions: Heavy tra�c is gen-
erated by setting � = 0.333, �d = 90, and �d =
3.5. Medium tra�c is generated by having � =
0.125, �d = 60, and �d = 3.5. The values on
the x-axis are normalized. Under the heavy traf-
�c, the resource demands arrive more frequently
than under the medium tra�c.

4.2 Experiment 1: Number of Admit-

ted Streams

The major advantage of the RAC is its guar-
anteeing more numbers of streams to be admit-
ted and to run simultaneously with a tolerable
degradation of quality. As shown in Figure 1,
under tra�c loads that demand more than the
available resources, the accumulated occurrences
of admission decreases (rejection increases), both
in the basic method and in our strategy. The
heavier the tra�c is, the better performance the
RAC algorithm achieves compared to the ba-
sic greedy algorithm (as shown in Figure 1(a)).
In another point of view, the RWR algorithm
achieves a 200 � 300% increase in the number of
streams that can be serviced simultaneously by
the server. In case of the DRA algorithm, it also
achieves about a 100% increase. In other words,

our RAC algorithm (both RWR and DRA)
noticeably reduces the rejection ratio compared
to the basic greedy method.

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300
of Admitted Streams vs. Time

Time

of

 A
dm

itt
ed

 S
tr

ea
m

s

Treserve = 0.3 (RWR mode)
Treserve = 0.3 (DRA mode)
Treserve = 0.0 (Greedy method)

(a) Heavy Tra�c

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

300
of Admitted Streams vs. Time

Time

of

 A
dm

itt
ed

 S
tr

ea
m

s

Treserve = 0.3 (RWR mode)
Treserve = 0.3 (DRA mode)
Treserve = 0.0 (Greedy method)

(b) Medium Tra�c

Figure 1: Number of Admitted Streams over Time

4.3 Experiment 2: System Utilization

and Total Quality

In this section, we mainly focus on visualizing
the e�ect of the RAC algorithm with respect
to total system utilization and display quality.
Figure 2 plots the total system utilization that
is achieved by the sum of each application's
done ratio. It is observed that the total system
utilization achieved by RWR is much higher
during most of the period. Hence, the RWR
algorithm is able to utilize the system resources
more e�ciently than the greedy algorithm.

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

20

25

30

35

40
Total System Utilization vs. Time

Time

T
ot

al
 S

ys
te

m
 U

til
iz

at
io

n

Treserve = 0.3 (RWR mode)
Treserve = 0.3 (DRA mode)
Treserve = 0.0 (Greedy method)

(a) Heavy Tra�c

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14

16

18
Total System Utilization vs. Time

Time

T
ot

al
 S

ys
te

m
 U

til
iz

at
io

n

Treserve = 0.3 (RWR mode)
Treserve = 0.3 (DRA mode)
Treserve = 0.0 (Greedy method)

(b) Medium Tra�c

Figure 2: Total System Utilization over Time

To investigate the display quality of the RAC
algorithm, we plot another curve. Figure 3 il-
lustrates the total quality which is quanti�ed by
dividing the sum of each application's done ratio

by the number of current running streams. It
is observed that the total quality achieved by
the RWR algorithm is almost the same as that
achieved by the greedy algorithm. In contrast,
the performance of DRA algorithm in total
quality is kind of low most of the time. This
arises due to the fact that the DRA algorithm
holds o� the reserves for future streams, which
arrive soon before some of the current running
streams depart. Under medium tra�c, though
the performance of DRA gets better, it is still
too low.

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

1.2
Total Quality vs. Time

Time

C
ur

re
nt

 T
ot

al
 Q

ua
lit

y

Treserve = 0.3 (RWR mode)
Treserve = 0.3 (DRA mode)
Treserve = 0.0 (Greedy method)

(a) Heavy Tra�c

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

1.2
Total Quality vs. Time

Time

C
ur

re
nt

 T
ot

al
 Q

ua
lit

y

Treserve = 0.3 (RWR mode)
Treserve = 0.3 (DRA mode)
Treserve = 0.0 (Greedy method)

(b) Medium Tra�c

Figure 3: Total Quality over Time

4.4 Experiment 3: Admission Ratio

Under the heavy load, RWR achieves the best
admission ratio (a 150 � 250% increase), and
DRA achieves the next (about 100% increase).
Under the medium load, the increase rates of the
two RAC methods are decreased compared to
under the heavy load. Unlike the heavy load, the
DRA method achieves even better performance
than RWR . This is because when the tra�c
load is not too heavy, DRA is able to utilize
the resources more e�ciently by taking o� some
resources from the reserves. The probability of
reserves running out under medium/light loads
is smaller than that under the heavy load. How-
ever, we can observe that the RAC (both RWR
and DRA) strategy noticeably increases the
admission ratio compared to the greedy method.
Degradation makes the applications use a lower
(but fully reasonable due to the properties of
CM) amount of resources; therefore, more ap-

plications can be supported on the resource.

0 200 400 600 800 1000 1200 1400 1600 1800
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ratio of Admitted to Total Requested Applications vs. Time

Time

A
dm

is
si

on
 R

at
io

Treserve = 0.3 (RWR mode)
Treserve = 0.3 (DRA mode)
Treserve = 0.0 (Greedy method)

(a) Heavy Tra�c

0 500 1000 1500 2000 2500 3000 3500 4000
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Ratio of Admitted to Total Requested Applications vs. Time

Time

A
dm

is
si

on
 R

at
io

Treserve = 0.3 (RWR mode)
Treserve = 0.3 (DRA mode)
Treserve = 0.0 (Greedy method)

(b) Medium Tra�c

Figure 4: Admission Ratio over Time

5 Related Work

Several techniques for the admission controlling
of continuous media have been proposed in the
literature. Ensuring continuous retrieval of each
strand requires that the service time not exceed
the minimum of playback durations of the blocks
retrieved for each strand during a round, which
is a typical greedy admission control strategy
[5, 19]. Usually the simple admission control de-
cisions are based on the worst case scenario.
The worst case policy is based on the observa-
tion that multimedia tra�c is characterized by
its bursty nature; therefore, if su�cient resources
are not available for the worst case scenario, then
the applications may fail [16]. Similar admission
control based on the worst case analysis of the
application stream has been formulated by other
researchers [14, 15, 3].
To improve the resource utilization, predic-

tive (observation-based) admission control algo-
rithms for clients have been suggested [17]. It
simply uses the average amount of time spent in
retrieving a media block instead of the worst-case
assumptions Vin et al. [18] described a statistical
admission control algorithm in which new clients
are admitted for service as long as the statisti-
cal estimation of the aggregate data rate require-
ment, rather than the corresponding peak data
rate requirement, can be met by the server, They
improve the utilization of server resources by ex-
ploiting the variation in the disk access times of

media blocks, as well as by exploiting the vari-
ation in playback rate requirement by variable
rate compression techniques. Statistically they
are safe but in the worst case it may cause appli-
cations to fail because of resource congestion.

6 Concluding Remarks

We presented an integrated adaptive admission
control and scheduling algorithm for CM server
systems. We have also presented results of a
simulation evaluation of our algorithm and a
greedy algorithm with respect to several metrics
designed to measure the admission ratio, total
quality, and system utilization. It was observed
that under heavy tra�c, our algorithm achieves
much better performance than the greedy algo-
rithm. Using our scheme, we could expect that
more streams could be running with an accept-
able range of data quality in a given system re-
source. Our ongoing [6] and future work include
extending the QoS metrics considered in our al-
gorithm to multi-dimensional ones (e.g., frame
size, bu�er requirement, compression quality fac-
tor, scalability, network bandwidth, etc.).

References

[1] F. T. Ernst W. Biersack. Statistical Admission Control
in Video Servers with Constant Data Length Retrieval
of VBR Streams. In Third International Conference on
Multimedia Modeling, Toulouse, France, Nov 1996.

[2] J. W. G. de Veciana, G. Kesidis. Resource Manage-
ment in Wide-Area ATM Networks Using E�ective Band-
widths. IEEE Journal on Selected Areas in Communica-
tion, 13(6):1081{1090, Aug 1995.

[3] D. Gemmell and S. Christodoulakis. Principles of Delay
Sensitive Multimedia Data Storage and Retrieval. ACM
Trans. Information Systems, 10(1):51{90, 1992.

[4] R. Haskin and F. Schmuck. The Tiger Shark File System.
In COMPCON 96, 1996.

[5] S. W. Lau and J. C. S. Lui. A Novel Video-On-Demand
Storage Architecture for Supporting Constant Frame Rate
with Variable Bit Rate Retrieval. In 5th International
Workshop on Network and Operating Systems Support for
Digital Audio and Video, Durham, N.H. , 1995.

[6] W. Lee and B. Sabata. Admission Control and QoS Nego-
tiations for Soft-Real Time Applications. In Proceedings of
the IEEE International Conference on Multimedia Com-
puting and Systems (ICMCS'99), Florence, Italy, June
1999.

[7] W. Lee and J. Srivastava. CORBA Evaluation of Video
Streaming wrt QoS Provisioning. In Proceedings of the
Workshop on Multimedia Networking held in conjunction
with the 17th IEEE Symposium on Reliable Distributed
Systems (SRDS '98), West Lafayette, Indiana, October
1998.

[8] W. Lee and J. Srivastava. Dynamic/Adaptive Algorithms
for Admission Control and Scheduling of Video Servers.
Submitted for publication in IEEE Transactions on Com-
puters, 1999.

[9] W. Lee, D. Su, and J. Srivastava. QoS-based Evaluation
of File Systems and Distributed System Services for Con-
tinuous Media Provisioning. To appear in Information
and Software Technology, Elsevier Science, 1999.

[10] W. Lee, D. Su, J. Srivastava, D. Kenchammana-hosekote,
and D. Wijesekera. Experimental Evaluation of PFS Con-
tinuous Media File System. In 6th ACM Int'l Conf. on
Information and Knowledge Management (CIKM '97),
November 1997.

[11] D. M. Grossglauser. Measurement-Based Call Admission
Control: Algorithms and Analysis. In IEEE INFCOM'97,
April 1997.

[12] D. Makaro�, G. Neufeld, and N. Hutchinson. An Evalu-
ation of VBR Disk Admission Algorithms for Continuous
media File Servers. In Proceedings of the ACM Multime-
dia Conference, Seattle, Wa, Dec 1997.

[13] C. Martin, P. S. Narayanan, B. Ozden, R. Rastogi, and
A. Silberschatz. The Fellini Multimedia Storage Server.
In S. M. Chung, editor, Multimedia Information Sotrage
and Management. Kluwer Academic Publishers, 1996.

[14] P. V. Rangan and H. M. Vin. Designing a Multiuser
HDTV Storage Server. IEEE Journal on Seleted Areas
in Communications, 11(1):153{164, January 1993.

[15] A. Reddy and J. Wyllie. I/O Issues in a Multimedia Sys-
tem. Computer, 27(3):69{74, 1994.

[16] S. K. T. S.V.Raghavan. Networked Multimedia Systems:
Concepts, Architecture, and Design. Prentice Hall, 1998.

[17] H. M. Vin, A. Goyal, , P. Goyal, and A. Goyal. An
Observation-Based Approach for Designing Multimedia
Servers. In Proceedings of the IEEE International Con-
ference on Multimedia Computing and Systems, Boston,
MA, May 1994.

[18] H. M. Vin, P. Goyal, A. Goyal, and A. Goyal. A Statisti-
cal Admission Control Algorithm for Multimedia Servers.
In Proceedings of ACM Multimedia '94), San Francisco,
October 1994.

[19] H. M. Vin and P. V. Rangan. Admission Control Algo-
rithms for Multimedia On-Demand Servers. In 3rd Inter-
national Workshop on Network and Operating Systems
Support for Digital Audio and Video, 1992.

[20] D. Wijesekera and J. Srivastava. Experimental Evaluation
of Loss Perception in Continuous Media. to appear in
ACM Springer Multimedia Systems Journal, 1999.

