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Abstract

Web Usage Mining is the application of data mining techniques to Web clickstream
data in order to extract usage patterns. As Web sites continue to grow in size and
complexity, the results of Web Usage Mining have become critical for a number of
applications such as Web site design, business and marketing decision support, per-
sonalization, usability studies, and network traffic analysis. The two major challenges
involved in Web Usage Mining are preprocessing the raw data to provide an accurate
picture of how a site is being used, and filtering the results of the various data min-
ing algorithms in order to present only the rules and patterns that are potentially
interesting. This thesis develops and tests an architecture and algorithms for per-
forming Web Usage Mining. An evidence combination framework referred to as the
information filter is developed to compare and combine usage, content, and structure
information about a Web site. The information filter automatically identifies the
discovered patterns that have a high degree of subjective interestingness. The results
of experiments with the information filter show that lists of thousands of discovered
patterns can be reliably ranked according to interestingness, as defined by the de-
viation from a predefined set of expectations about the usage of a Web site. Also,
the necessary steps for preprocessing clickstream data are identified, and algorithms
for each of these steps are developed and tested against data from a large electronic
commerce Web site. The results show that proper preprocessing, including the in-
corporation of knowledge about the structure of a Web site, is required to obtain
meaningful usage patterns.
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Chapter 1

Introduction

The use of hypertext linked displays continues to expand at an amazing rate as a
medium for conducting business and disseminating information via the World Wide
Web. Even with evolving standards and technology, there are many challenges that
must be overcome in order to thoroughly analyze the usage of a Web site. Design of
a Web site centers around organizing the information on each page and the hypertext
links between the pages in a way that seems most natural to the site users in order
to facilitate their browsing (and possibly purchasing). For small sites, an individual
Web designer’s intuition along with some straightforward usage statistics may be
adequate for predicting and verifying the users’ browsing behavior. However, as the
size and complexity of a Web site increases, the simple statistics provided by existing
Web log analysis tools [7, 8, 14] are inadequate for providing meaningful insight into
how a Web site is being used. Web Usage Mining, which is the application of data
mining techniques to large Web data repositories, adds powerful techniques to the
tools available for analyzing Web site usage. Figure 1.1 shows the high level steps
involved in the Web Usage Mining Process.

In Web Usage Mining, as with many data mining domains, objective measures
such as support and confidence [20] are often used to limit the number of discovered
rules to a manageable number. However, high thresholds on objective measures often
result in patterns that only confirm the obvious, and low thresholds usually result

in an unmanageable number of rules. For example, products that are offered on the
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Figure 1.1: High Level Web Usage Mining Process

same page view will often appear in discovered patterns as being highly correlated.
However, these patterns are not particularly useful for performing a task such as per-
sonalization or Web site design. Dynamically adding a recommendation for a product
that is already in front of the user does not necessarily justify the expense of data
mining. One of the main goals of pattern analysis is to assist an analyst (or process
in the case of personalization or some other real-time task) in identifying patterns
that are of potential interest. The definition of interestingness is often subjective,

and based on the domain knowledge of the particular analyst.

Therefore, in order to be truly useful, a method for ranking the results of Web
Usage Mining according to subjective interestingness is required. This interest mea-
sure must be able to compare and combine the evidence gathered from the pattern
discovery algorithms, with domain knowledge about how a Web site is expected to
be used. Along with the challenge of defining a subjective interestingness framework

comes the challenge of automatically quantifying domain knowledge. Even an ideal



framework is useless without a set of domain knowledge to compare to the discovered
patterns. Ideally, data sources other than usage data, that are associated with every
Web site, can be used to automatically generate a default set of domain knowledge.
There are many kinds of data that are involved in the Web Usage Mining process.
This thesis classifies such data into the following types:
e Content: The real data in the Web pages, i.e. the data the Web page was

designed to convey to the users. This usually consists of, but is not limited to,
text and graphics.

e Structure: Data which describes the organization of the content. Intra-page
structure information includes the arrangement of various HITML or XML tags
within a given page. The principal kind of inter-page structure information is
hyper-links connecting one page to another.

e Usage: Data that describes the pattern of usage of Web pages, such as IP
addresses, page references, and the date and time of accesses. Typically, the
usage data comes from an Extended Common Log Format (ECLF) Server log.

e User Profile: Data that provides demographic information about users of the
Web site. This includes registration data and customer profile information.

The information provided by the data sources listed above can all be used to
construct a data model consisting of several data abstractions, notably users, page
views, click-streams, server sessions, and episodes. In order to provide some consis-
tency in the way these terms are defined, the W3C Web Characterization Activity
(WCA) [15] has published a draft of Web term definitions relevant to analyzing Web
usage. A page view is defined as all of the files that contribute to the client-side
presentation seen as the result of a single mouse “click” of a user. A click-stream is
then the sequence of page views that are accessed by a user. A server session is the
click-stream for a single visit of a user to a Web site. Finally, an episode is a subset
of page views from a server session. These definitions will be discussed in more detail

in Chapter 3.



In order to create the data model discussed above, significant amounts of prepro-
cessing must be performed. Web Usage Mining preprocessing consists of converting
the usage, content, and structure information contained in the various available data
sources into the data abstractions necessary for pattern discovery. The practical dif-
ficulties in performing preprocessing are a moving target. As the technology used to
deliver content over the Web changes, so do the preprocessing challenges. While each
of the basic preprocessing steps remains constant, the difficulty in completing certain
steps has changed dramatically as Web sites have moved from static HTML served di-
rectly by a Web server, to dynamic scripts created from sophisticated content servers
and personalization tools. Both client-side tools (e.g. browsers) and server-side tools
(e.g. content servers) have undergone several generations of improvements since the
inception of the Web. The only piece that has remained relatively constant is the
transport mechanism - the Hypertext Transport Protocol (HTTP). The fundamental
characteristics of the current HT'TP version are relatively unchanged from the orig-
inal version. However, as the W3C works to develop the “next generation” protocol
(referred to as HTTP-NG), even the “constants” such as a stateless connection may
disappear (The addition of “persistent connections” is expected to improve perfor-
mance and will greatly simplify Web Usage Mining preprocessing). The methods
described in this thesis try to account for variations in the client-side and server-side
technologies, but are heavily dependent on the implementation of transport protocol.

Once the raw usage data has been preprocessed into server sessions or episodes, a
number of techniques can be used to discover patterns such as association rules [20],
clusters of similar pages or users, or sequential patterns [70]. As will be discussed
in Chapter 2, the discovered patterns can then be used for a variety of applications,

such as:

e Site Design - reorganization of the link structure or content of the pages to
reflect actual usage.



e Business/Marketing Decision Support - determination of common behaviors or
traits of users who perform certain actions, such as purchasing merchandise.

e Personalization - customization of page views based on information gained
about each user. This can include dynamic pricing or real-time promotions
to encourage “cross-sells” and “up-sells.”

e Usability Studies - determination of interface quality.
e Security - detection of “unusual” accesses to secure data.

e Network Traffic Analysis - determination of equipment requirements and data
distribution in order to efficiently handle site traffic.

Each of theses applications can benefit from patterns that are ranked by subjective
interestingness. Even if an entire list of patterns is ranked as subjectively uninter-
esting, this can be of value. For site design, this confirms that the Web site is being
used as intended. For security applications, the lack of unexpected patterns indicates
everything is normal. Without an automatic ranking of each rule as interesting or
uninteresting, an analyst must manually sift through the entire list of results. The
rare subjectively interesting rule or pattern can be easily overlooked among hundreds
of uninteresting patterns. As will be shown in Chapter 8, a pattern may not even
look interesting at first glance.

This thesis tests a number of hypotheses regarding the use of an evidence combina-
tion framework referred to as the information filter. The information filter is defined
in Chapter 7, and automatically ranks discovered patterns according to subjective in-
terestingness by comparing and combining usage, content, and structure information
about a Web site. The hypotheses include:

e Frequent itemsets of page views can be reliably ranked according to subjective
interestingness by comparing the itemsets to the site structure.

e Clusters of page views can be reliably ranked according to subjective interest-
ingness by comparing the clusters to the site content.



In order to effectively test the information filter, this thesis also defines and tests
a number of preprocessing algorithms and heuristics. The preprocessing hypotheses

include:

e The information available in an ECLF log is sufficient for accurately identifying
server sessions.

e Client-side caching of page references can be reliably inferred from the informa-
tion in an ECLF log for a static Web site.

e The usage type of a page view can be inferred by the amount of time a user
spent viewing the page.

An experimental Web Usage Mining system called the Web Site Information Fil-
ter (WebSIFT) system has been designed and implemented to test the hypotheses
listed above. The tests confirm the two hypotheses related to the information filter,
and show that lists of thousands of discovered patterns can be filtered and ranked
according to subjective interestingness as defined by the deviation from a predefined
set of expectations about Web site usage. The results of the tests confirm all of
the preprocessing hypotheses except the first. For dynamic Web sites such as the
type used for electronic commerce, a positive means of session identification, such
as cookies or embedded session IDs, is necessary to accurately preprocess the usage
data.

The rest of this thesis is organized as follows: Chapter 2 discusses background
and related work. Chapter 3 explains the available data sources and data modeling
required prior to any analysis. The various algorithms used by the WebSIFT system
will be developed in Chapters 4 through 7, and results of experiments using the
WebSIFT system will be presented in Chapters 8 and 9. Finally, Chapter 10 provides

a conclusion.



Chapter 2

Related Work

Monitoring and understanding how the Web is used is an active area of research
in both the academic and commercial worlds. Web Usage Characterization or Web
Metrics focuses on the properties of the entire (or a large portion of) Web and how
the Web is used as a whole. Web Usage Mining or Analysis can be broadly defined
as being interested in patterns of behavior for Web users. Web Usage Mining is often
restricted to a single or small number of sites. In addition to Web Usage Mining, there
is also much work being done to characterize the structure and content of the Web.
The results of Web Structure Mining or Web Content Mining are often necessary to
get meaningful analysis out of any discovered usage patterns. There is an entire body
of research devoted to Data Mining and Pattern Discovery algorithms, independent of
any particular domain. Since these algorithms are integral to the Web Usage Mining
process, they will be addressed separately in Chapter 6. Finally, work dealing with
the identification of interesting patterns from the set of discovered patterns, along
with reasoning with uncertainty, is relevant to filtering the results of any Web Usage

Mining effort.

2.1 Web Usage Mining

While the number of candidate dimensions that can be used to classify Web Usage

Mining projects is many, there are five major dimensions that apply to every project

7



Project Application Data Source Data Type User Site
Focus Server |Proxy |Client [[Structure |Content |Usage |Profile |Single |Multi §Single |Multi
WebSIFT General X X X X X X
SpeedTracer General X X X X
WUM General X X X X X
Shahabi General X X X X X
Site Helper Personalization X X X X X
Letizia Personalization X X X X X
Web Watcher Personalization X X X X X X
Krishnapuram Personalization X X X X
Analog Personalization X X X X
WebPersonalizer Personalization X X X X X
Tuzhilin Business X X X X
SurfAid Business X X X X X
Buchner Business X X X X X
WebTrends,Hitlist,Accrue,etc. Business X X X X
WebL ogMiner Business X X X X
PageGather, SCML Site Modification X X X X X X
Manley Characterization X X X X X
Arlitt Characterization X X X X X
Pitkow Characterization X X X X X X
Almeida Characterization X X X X
Rexford System Improve. X X X X X
Schechter System Improve. X X X X
Aggarwal System Improve. X X X X

Figure 2.1: Web Usage Mining Research Projects and Products

- the data sources used to gather input, the types of input data, the number of users
represented in each data set, the number of Web sites represented in each data set,
and the application area focused on by the project. Usage data can either be gathered
at the server level, proxy level, or client level, as will be discussed in Chapter 3. As
shown in Figure 2.1, most projects make use of server-side data. All projects analyze
usage data and some also make use of content, structure, or profile data. While
applying data mining to the structure and content of Web sites is an interesting area
of research in its own right, in the context of Web Usage Mining the structure and
content of a site can be used to facilitate preprocessing, filter the input to, or output
from, the pattern discovery algorithms. Results from Web Structure and Content
Mining projects, such as ParaSite [102], the authoritative source and hub work of
Kleinberg [53], LIRA [24], WebKB [46], or WebACE [75] can be used to cluster or
classify Web pages in order to enhance a Web Usage Mining project.

The algorithms for a project can be designed to work on inputs representing one
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Figure 2.2: Major Application Areas for Web Usage Mining

or many users, and one or many Web sites. Single user projects are generally involved
in the personalization application area. The projects that provide multi-site analysis
use either client or proxy level input data in order to easily access usage data from
more than one Web site. Most Web Usage Mining projects take single-site, multi-user,
server-side usage data, i.e. Web server logs, as input.

As shown in Figures 2.1 and 2.2, usage patterns extracted from Web data have
been applied to a wide range of applications. Projects such as WebSIFT [41, 43, 44,
45], WUM [103, 104], SpeedTracer [108], and Shahabi’s work [99] have focused on
Web Usage Mining in general, without extensive tailoring of the process towards one
of the various sub-categories. Chen et al. [35] introduced the concept of a mazimal
forward reference to characterize user episodes for the mining of traversal patterns.
A maximal forward reference is the last page requested before backtracking occurs

during a particular server session. The SpeedTracer project [108] from IBM Watson
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is built on the work originally reported in [35]. In addition to episode identification,
SpeedTracer makes use of referrer and agent information in the preprocessing routines
to identify users and server sessions in the absence of additional client side informa-
tion. The Web Utilization Miner (WUM) system [103] provides a robust mining
language to specify characteristics of discovered frequent paths that are interesting
to the analyst. In WUM, individual navigation paths called trails are combined into
an aggregated tree structure. Queries can be answered by mapping them into the
intermediate nodes of the tree structure. Shahabi et. al. [99, 113] have one of the few
Web Usage Mining systems that relies on client-side data collection. The client-side
agent sends back page request and time information to the server every time a page
containing the Java applet, either a new page or a previously cached page, is loaded

or destroyed.

2.1.1 Personalization

Personalizing the Web experience for a user is the holy grail of many Web-based ap-
plications such as individualized marketing for electronic commerce (e-commerce) [6],
and e-commerce sites such as Amazon.com. Making dynamic recommendations to a
Web user, based on her /his profile in addition to usage behavior, is very attractive for
many applications, e.g. cross-sales and up-sales in e-commerce. Web Usage Mining
is an excellent approach for achieving this goal, as illustrated in the WebPersonalizer
system [74]. Existing recommendation systems, such as [9, 11], do not currently use
data mining for recommendations, though there have been some recent proposals [19].

WebWatcher [59], SiteHelper [78], Letizia [66], WebPersonalizer [74], and work by
Yan et. al. [109] have all concentrated on providing Web Site personalization based
on usage information. Web server logs were used by Yan et. al. [109] to discover

clusters of users having similar access patterns. The system proposed in [109] consists
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of an offline module that performs cluster analysis, and an online module which is
responsible for dynamic link generation of Web pages. Every site user is assigned
to a single cluster based on his/her current traversal pattern. The links that are
presented to a given user are dynamically selected based on what pages other users
assigned to the same cluster have visited. The SiteHelper [78] project learns a user’s
preferences by looking at the page accesses for each user. A list of keywords from
pages that a user has spent a significant amount of time viewing is compiled and
presented to the user. Based on feedback about the keyword list, recommendations
for other pages within the site are made. WebWatcher [59] “follows” a user as he/she
browses the Web and identifies links that are potentially interesting to the user. The
WebWatcher starts with a short description of a user’s interest. Each page request
is routed through the WebWatcher proxy server in order to easily track the session
across multiple Web sites and mark any interesting links. WebWatcher evaluates the
interestingness of new pages based on the particular user’s browsing plus the browsing
of other users with similar interests. Letizia [66] is a client side agent that searches
the Web for pages similar to ones that the user has already viewed or bookmarked.
The WebPersonalizer [74] page recommendations are based on clusters of pages found
from the server log for a site. The system recommends pages from clusters that most
closely match the current session. Pages that have not been viewed and are not
directly linked from the current page are recommended to the user. [76] attempts to
cluster server sessions using a fuzzy clustering algorithm, which allows a page or user

to be assigned to more than one cluster.

2.1.2 System Improvement

Performance and other service quality attributes are crucial to user satisfaction from

services such as databases, networks, etc. Similar qualities are expected from the
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users of Web services. Web Usage Mining provides the key to understanding Web
traffic behavior, which can in turn be used for developing policies for Web caching,
network transmission [39], load balancing, or data distribution. Security is an acutely
growing concern for Web-based services, especially as e-commerce continues to grow
at an exponential rate [50]. Web Usage Mining can also provide patterns which are
useful for detecting intrusion, fraud, attempted break-ins, etc.

Almeida et al. [22, 71] propose models for predicting the locality, both temporal
as well as spatial, amongst Web pages requested from a particular user or a group
of users accessing from the same proxy server. The locality measure can then be
used for deciding pre-fetching and caching strategies for the proxy server. However,
the increased use of dynamic content has reduced the benefits of caching at both the
client and server level. Schechter et. al. [95] have developed algorithms for creating
path profiles from data contained in server logs. These profiles are then used to pre-
generate dynamic HTML pages based on the current user profile in order to reduce
latency due to page generation. Using proxy information for pre-fetching pages has

also been studied by [18] and [39].

2.1.3 Site Modification

The attractiveness of a Web site, in terms of both content and structure, is crucial
to many applications, e.g. a product catalog for e-commerce. Web Usage Mining
provides detailed feedback on user behavior, providing the Web site designer with
information on which to base redesign decisions. Web usage data provides an oppor-
tunity to turn every site into an ongoing usability test. While the information is not
as complete as the information that can be gathered from a formal usability analysis
with videos and trained observers, Web usage data are cheap and plentiful. Access

times and measures of lostness can be calculated automatically instead of manually
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as in [65].

While the results of any of the projects could lead to redesigning the structure and
content of a site, the adaptive Web site project (SCML algorithm) [81, 82] focuses
on automatically changing the structure of a site based on usage patterns discovered
from server logs. Clustering of pages is used to determine which pages should be

directly linked.

2.1.4 Business Intelligence

Information on how customers are using a Web site is critical for marketers of e-
commerce businesses. Buchner et al. [33, 32] have presented a knowledge discovery
process in order to discover marketing intelligence from Web data. They define a Web
log data hypercube that consolidates Web usage data along with marketing data for
e-commerce applications. Four distinct steps are identified in customer relationship
life cycle that can be supported by their knowledge discovery techniques : customer
attraction, customer retention, cross sales and customer departure. Blue Martini [17]
uses clickstream data gathered directly from the content server to discover patterns
such as decision tree rules. There are several commercial products, such as Sur-
fAid [13], Accrue [3], NetGenesis [10], Aria [5], Hitlist [8], and WebTrends [14] that
provide Web traffic analysis mainly for the purpose of gathering business intelligence.
In addition to straight forward usage statistics, Accrue, NetGenesis, and Aria are
designed to analyze e-commerce events such as products bought and advertisement
click-through rates . Accrue also provides a path analysis visualization tool and IBM’s
SurfAid provides On-Line Analytical Processing (OLAP) through a data cube and
clustering of users in addition to page view statistics. Padmanabhan et. al. [79] use
Web server logs to generate beliefs about the access patterns of Web pages at a given

Web site. Algorithms for finding interesting rules based on the unexpectedness of the
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rule are also developed. Han et al. [112] have loaded Web server logs into a data cube
structure in order to perform data mining as well as OLAP activities such as roll-up
and drill-down of the data. Their WebLogMiner system has been used to discover
association rules, perform classification and time-series analysis. e.g. event sequence

analysis, transition analysis and trend analysis.

2.1.5 Web Usage Characterization

While most projects that work on characterizing the usage, content, and structure of
the Web don’t necessarily consider themselves to be engaged in data mining, there
is a large amount of overlap between Web characterization research and Web Usage
Mining. Pitkow et al. [34, 87, 85] discuss the results of a study conducted at the
Georgia Institute of Technology, in which the Web browser Xmosaic was modified
to log client-side activity. The results collected provide detailed information about
the user’s interaction with the browser interface as well as the navigational strategy
used to browse a particular site. The project also provides detailed statistics about
occurrence of the various client side events such as clicking the back/forward buttons,
saving a file, adding to bookmarks etc. The results of subsequent yearly studies are
available from http://www.cc.gatech.edu/gvu/user_surveys/. Pitkow et al. [58] also
propose a model which can be used to predict the probability distribution for various
pages a user might visit on a given site. This model works by assigning a value to
all the pages on a site based on various attributes of that page. The formulas and
threshold values used in the model are derived from an extensive empirical study
carried out on various browsing communities and their browsing patterns. Arlitt et
al. [23] discuss various performance metrics for Web servers along with details about
the relationship between each of these metrics for different workloads. Manley [69]

develops a technique for generating a custom made benchmark for a given site based
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on its current workload. This benchmark, which he calls a self-configuring benchmark,
can be used to perform scalability and load balancing studies on a Web server. Chi et.
al. [37] describe a system called WEEV (Web Ecology and Evolution Visualization)
which is a visualization tool to study the evolving relationship of Web usage, content

and site topology with respect to time.

2.2 Discovery of Interesting Patterns

The notion of what makes discovered knowledge interesting has been addressed
in [83, 101, 67, 79]. A survey of methods that have been used to characterize the in-
terestingness of discovered patterns is given in [56]. Four dimensions are used by [56]
to classify interestingness measures - pattern-form, representation, scope, and class'.
Pattern-form defines what type of patterns a measure is applicable to, such as asso-
ciation rules or classification rules. The representation dimension defines the nature
of the framework, such as probabilistic or logical. Scope is a binary dimension that
indicates whether the measure applies to a single pattern, or to the entire discovered
set. The final dimension, class, is also a binary dimension that can be labeled as
subjective or objective. Objective measures rate rules based on the data used in the
mining process. Common objective measures include confidence and support [20], or
chi-square [31].

Subjective measures are based on the analyst’s beliefs or biases. A common theme
among the various criteria for subjective interestingness is the concept of nowvelty or
unezxpectedness of a rule. Results that were previously known by the data analyst are

not considered interesting. [79] formally defines the unexpectedness of a rule in terms

1[56] uses the term representation for the first dimension and foundation in place of the sec-
ond dimension. However, in order to be consistent with the large body of existing reasoning with
uncertainty literature, the terms have been changed in this thesis.
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of its deviation from a set of beliefs. [67] has a broader definition of interestingness
that includes discovered rules that are not specifically covered by an initial set of
beliefs. In other words, a rule that doesn’t contradict an existing belief, but points
out a relationship that hadn’t even been considered is also interesting. While both [67]
and [79] give examples of small sets of manually generated beliefs, neither addresses
the issue of automated generation of a realistic belief set from a large amount of data.
Also, the [67] framework only applies to classification rules.

While the determination of interestingness does not involve inferring new facts
from a knowledge base, the comparison and combination of evidence from different
sources has been studied extensively under the heading of Reasoning with Uncertainty
or Evidential Reasoning. The critical differences between Reasoning with Uncertainty
systems and interestingness frameworks is that Reasoning with Uncertainty must be
concerned with the quality of the knew knowledge that is inferred, and the complexity
associated with chaining of rules and facts as knew evidence is added to the knowledge
base. One of the earliest systems, MYCIN [100], was fairly ad-hoc but successful in
inferring medical diagnoses from a list of symptoms. More recent work has been based
on Bayesian inference [80], Dempster-Shafer inference [96], or probability-bounds [27].
The various types of inference will be discussed in more detail in Chapter 7 in order

to choose a representation for a subjective interestingness framework.



Chapter 3
Data Sources and Data Modeling

A high level view of Web Usage Mining was shown in Figure 1.1 in the Introduction.
A more detailed breakdown of the steps involved is shown in Figure 3.1. The various
data sources that can be used as input to the Web Usage Mining process are converted
into data abstractions such as server sessions and site structure by the preprocessing
tasks. This chapter discusses both the sources and format of the input data, as well

as the abstractions that are required to perform any type of meaningful analysis.

3.1 Web Data Sources

One of the key steps in Knowledge Discovery in Databases [51] is to create a suit-
able target data set for the data mining tasks. As shown in Figure 3.2, data can be
collected at the server-level, client-level, proxy-level, or obtained from an organiza-
tion’s database (which can contain business data or consolidated Web data). Each
type of data collection differs not only in terms of the location of the data source,
but also in the kinds of data available, the segment of population from which the
data was collected, and its method of implementation. The usage data collected at
the different sources represent the navigation patterns of different segments of the
overall Web traffic, ranging from single-user, single-site browsing behavior to multi-
user, multi-site access patterns. Client-level logs generally give single-user/multi-site

behavior, server-level logs depict multi-user/single-site behavior, and proxy-level logs
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Figure 3.2: Simplified Web Access Diagram

track multi-user /multi-site usage behavior. Figure 3.2 illustrates why reliably track-
ing user behaviors can be so difficult from data sources such as Web server logs. A
Web server log is located in the middle of a communication stream that does not
always contain sufficient or accurate information for inferring the behaviors at the
client-side as they relate to the pages served from the content server. As an example,
Figure 3.3 shows a time-line for three page file requests from a client. For simplicity,
only the client-level and server-level events are depicted. A proxy-level or packet-
sniffer log would pick up the request for page A some time between ¢y, and ¢;, and
the subsequent response from the server between times ¢ and t3. The content-server
level would see the request and it’s own response between times ¢; and t,. As shown
in the figure, the user actions at the client-level are not always accurately tracked at
the server-level in terms of the number of actions or the times associated with each

action. This will be investigated further in the next section.

3.1.1 Server-Level Collection

A Web server log is an important source for performing Web Usage Mining because it

explicitly records the browsing behavior of site visitors. The data recorded in server
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Figure 3.3: Timeline for Page File Request and Response

logs reflects the (concurrent and interleaved) access of a Web site by multiple users.
These log files can be stored in various formats such as Common Log Format (CLF)
or Extended Common Log Format (ECLF) [68]. An example of ECLF is shown in
Figure 3.4. The basic data fields are the client IP address, user ID, time/date, request,
status, bytes, referrer, and agent. The client TP address is the internet address of the
machine that made the request. This may or may not represent the address of a
proxy-server. The user ID is filled in only when authentication is required to access
the files. The time/date stamp represents the time the request was received by the
Web server and the request field lists the method, URI', and protocol for the object
being requested. The method portion for the request is usually either GET, POST,

! Uniform Resource Identifier (URI) is a more general definition that includes the commonly
referred to Uniform Resource Locator (URL).
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or HEAD. GET requests an object from the Web server, POST sends information to
the WEB server, and HEAD requests just the HT'TP header for an object. The URI
is either a static file in the local file system, or the name of an executable program
that will be called in response to the request. The status field is set by the Web server
and indicates the action taken in response to a request. Codes from 200 through 299
generally indicate success, 300 through 399 indicate some form of redirection, 400-499
indicate an error serving the particular request, and 500-599 indicate a problem with
the Web server. A common error code is 404, which indicates the requested file was
not found. The size field logs the number of bytes returned as a result of a request.
The referrer field can contain the URI of the source of the request. For URIs that
are typed in or access through a bookmark, the referrer field will be null (As shown
in lines 1,4, and 10 of Figure 3.4). Finally, the agent field is a text string that can

indicate the operating system and browser software used by the client.

Due to caching and network transmission times, the information in the Server log
may not be entirely reliable. As shown in Figure 3.3, the second request for page
A by the client is served by the local cache, and is not recorded by the server log.
Even when caching is not present, the view time for a page as recorded in a server
log is often longer than the actual view time on the client-side. Again, as shown in
Figure 3.3, the time between requests for pages A and B is ts — t1, but the actual view
time for page A is only t5 — t,. Depending on the connection speed of the client, the
size of the page file, and network congestion, the difference in recorded and actual

view time (¢4 + tg — t; — t5) may range from a single second to several minutes.

Tracking of individual users is not an easy task due to the stateless connection
model of the HT'TP protocol. In order to handle this problem, Web servers can also
store other kinds of usage information such as cookies in separate logs, or appended

to the CLF or ECLF logs. Cookies are tokens generated by the Web server for
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IP Address | Userid Time Method/ URL/ Protocol Status | Size | Referrer Agent
123.456.78.9 -- [25/Apr/1998:03:04:41 -0500] | "GET A.html HTTP/1.0" 200 3290 - Mozilla/3.04 (Win95, 1)
123.456.78.9 -- [25/Apr/1998:03:05:34 -0500] | "GET B.html HTTP/1.0" 200 2050 | A.html | Mozilla/3.04 (Win95, I)
123.456.78.9 -- [25/Apr/1998:03:06:02 -0500] | "POST /cgi-bin/pl HTTP/1.0" | 200 5096 | B.html | Mozilla/3.04 (Win95, I)
123.456.78.9 -- [25/Apr/1998:03:06:58 -0500] | "GET A.html HTTP/1.0" 200 3290 - Mozilla (IE4.2, WinNT)
123.456.78.9 -- [25/Apr/1998:03:07:42 -0500] | "GET B.html HTTP/1.0" 200 2050 | A.html | Mozilla (IE4.2, WinNT)
123.456.78.9 -- [25/Apr/1998:03:09:50 -0500] | "GET C.html HTTP/1.0" 200 1820 | A.html | Mozilla (IE4.2, WinNT)
123.456.78.9 -- [25/Apr/1998:03:10:02 -0500] | "GET O.html HTTP/1.0" 200 2270 | F.html | Mozilla/3.04 (Win95, I)
123.456.78.9 -- [25/Apr/1998:03:10:45 -0500] | "GET J.html HTTP/1.0" 200 9430 C.html | Mozilla (IE4.2, WIinNT)
123.456.78.9 -- [25/Apr/1998:03:12:23 -0500] | "GET G.html HTTP/1.0" 200 7220 | B.html | Mozilla/3.04 (Win95, I)
209.456.78.2 -- [25/Apr/1998:05:05:22 -0500] | "GET A.html HTTP/1.0" 200 3290 - Mozilla/3.04 (Win95, 1)
209.456.78.3 -- [25/Apr/1998:05:06:03 -0500] | "GET D.html HTTP/1.0" 200 1680 | A.html | Mozilla/3.04 (Win95, 1)

Figure 3.4: Sample ECLF Log

individual client browsers in order to automatically track the site visitors. Cookies
rely on implicit user cooperation and thus have raised growing concerns regarding user
privacy. Query data, which is typically generated by online visitors while searching

for pages relevant to their information needs, can also be logged on the server-side.

The Web server also relies on other utilities such as CGI (Common Gateway
Interface) scripts to handle data sent back from client browsers. Web servers imple-
menting the CGI standard parse the URI of the requested file to determine if it is an
application program. The URI for CGI programs may contain additional parameter
values to be passed to the CGI application. Once the CGI program has completed
its execution, the Web server sends the output of the CGI application back to the
browser. If the request is made through the hidden POST method, the parameters
will not be available in the CLF or ECLF logs. This is shown in the third line of
Figure 3.4. The request calls the executable program “/cgi-bin/pl”, but any CGI
variables that accompanied the request are passed directly to the program and are

not logged.

Packet sniffing technology (also referred to as “network monitors”)is an alterna-
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tive method to collecting usage data through server logs. Packet sniffers monitor
network traffic coming to a Web server and extract usage data directly from TCP/IP
packets (shown in Figure 3.2). If a packet sniffer is placed directly outside a Web
server, the segement of usage information available to the packet-sniffer is identical
to the information availabel to the Web server. While in practice commercial packet
sniffers [3, 5] tend to log hidden CGI variables, whereas CLF and ECLF logs do not,
there is no technical restriction that forces this difference. Packet sniffers also are
capable of logging information based on the actual content of the data packets in
addition to the HTTP headers. However, scalability quickly becomes an issue for
packet sniffers monitoring high volume Web sites. Packet sniffers can also be placed
“farther out” in a network away from a single server in order to collect usage data
for multiple Web servers.

A third server side usage data source is any application that is used to serve
dynamic content, commonly referred to as a content server or application server.
Most commercial content servers provide some sort of logging capabilities for usage
data. The main advantage of logging usage data directly from the content server
is that data is being collected from the source of the Web site content, as show in
Figure 3.2. All of the information required to determine what content is served, such
as hidden POST parameters or internal state variables, are available.

Besides usage data, the server side also provides access to the “site files”, e.g.
content data, structure information, local databases, and Web page meta-information

such as the size of a file and its last modified time.

3.1.2 Client Level Collection

Client-side data collection can be implemented by using a remote agent (such as

Javascripts or Java applets) or by modifying the source code of an existing browser



24

(such as Mosaic or Mozilla) to enhance its data collection capabilities. The imple-
mentation of client-side data collection methods requires user cooperation, either in
enabling the functionality of the Javascripts and Java applets, or to voluntarily use
the modified browser. As mentioned, client-side collection has an advantage over
server-side collection because it is located at the source of the user behaviors, pro-
viding relief from caching and session identification problems. However, Java applets
perform no better than server logs in terms of determining the actual view time of
a page. In fact, it may incur some additional overhead especially when the Java
applet is loaded for the first time. Javascripts, on the other hand, consume little
interpretation time but cannot capture all user clicks (such as reload or back but-
tons). These methods will collect only single-user, single-site browsing behavior. A
modified browser is much more versatile and will allow data collection about a single
user over multiple Web sites. In order to use this method, the users must be con-
vinced to use the modified browser for their daily browsing activities. This can be
done by offering incentives to users who are willing to use the browser, similar to the
incentive programs offered by companies such as NetZero [12], AllAdvantage [4], and

Alexa Internet [16].

3.1.3 Proxy Level Collection

As shown in Figure 3.2, the Internet Service Provider (ISP) machine that users con-
nect to through a modem is a common form of a Proxy server. A Web proxy acts as
an intermediary between client browsers and Web servers. Proxy-level caching can
be used to reduce the loading time of a Web page experienced by users as well as
the network traffic load at the server and client sides [39]. The performance of proxy
caches depends on their ability to predict future page requests correctly. Proxy traces

may reveal the actual HT'TP requests from multiple clients to multiple Web servers,



25

which can serve as a data source for characterizing the browsing behavior of a group
of anonymous users sharing a common proxy server. The effect of proxy-level caching
on server-side data collection is heavily dependent on the nature of the Web site being
accessed. Sites that use predominantly dynamic content, such as e-commerce sites,
will not be effected by proxy-level caching since each page served is technically a new
file (even if the content is the same). However, Web sites with static content, such as

digital libraries, can be very susceptible to proxy-level caching.

3.2 Data Modeling

As mentioned briefly in the Introduction, the W3C has defined several data abstrac-
tions for Web usage. These turn out to be the appropriate data model for performing
any type of usage analysis, whether it is static aggregation, OLAP, or data mining.

A wuseris defined as a single individual that is accessing files from one or more Web
servers through a browser. While this definition seems trivial, in practice it can be
very difficult to uniquely and repeatedly identify users. Even with the use of cookies,
a user may access the Web through different machines, or use more than one browser
on a single machine. Also, several users may use the same machine and browser.

A page view consists of the set of files that contribute to the display on a user’s
browser at one time. Page views are usually associated with a single user action
(such as a mouse-click) and can consist of several files such as frames, graphics, and
scripts. When discussing and analyzing user behavior, it is really the aggregate page
view that is of importance. The user does not explicitly ask for “n” frames and “m”
graphics to be loaded into his or her browser, the user requests a “Web page.” All
information to determine which files constitute a page view is accessible from the site
content. This thesis refers to a file that is served to a user as a page file. Due to

the nature of dynamic content, a page file may exist as several separate sources (e.g.
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database table, javascript) until a content server compiles them in response to a user
request.

A click-stream is a sequential series of page view requests. Again, the data avail-
able from the server side does not always provide enough information to reconstruct
the full click-stream for a site. Any page view accessed through a client or proxy-level
cache will not be “visible” from the server side. A wuser session is the click-stream
of page views for a single user across the entire Web. Typically, unless client-side
data collection is available, only the portion of each user session that is accessing a
specific site can be used for analysis, since access information is not publicly available
from the vast majority of Web servers. The set of page views in a user session for a
particular Web site is referred to as a server session (also commonly referred to as a
visit). A set of server sessions is the necessary input for any Web Usage analysis or
data mining tool. The end of a server session is defined as the point when the user’s
browsing session at that site has ended. This is concept is very difficult to track reli-
ably with server-side data since the “next-click” at a different Web site is not logged.
Also, there is no way of knowing when a user exits a browser when tracking from the
proxy or server levels. Any semantically meaningful subset of a user or server session
is referred to as an episode by the W3C WCA. The definitions and abstractions that
are frequently used throughout this thesis are summarized in Table 3.1. The next
two chapters will focus on converting the available data sources into the data model

necessary for performing Web Usage Mining.



Table 3.1: Frequently Used Definitions and Abstractions.

Term ‘ Definition
User Single individual that is accessing files from one or more
Web servers through a Browser.
Page File File that is served through HTTP protocol to a User.
Page View Set of Page Files that contribute to a single display in a
Web Browser.
Browser Client-side software that is responsible for displaying
Page Views and making HTTP requests to a Web Server.
Web Server Server-side software that is responsible for handling

incoming HT'TP requests.

Content Server

Server-side software that is responsible for serving Page
Files in response to requests.

Server Session

Set of page views served due to a series of HTTP
requests from a single User to a single Web Server.

Episode

Subset of page views from a single User or Server Session.
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Chapter 4
Structure and Content Preprocessing

Preprocessing the structure and content of a Web site are inter-related tasks. The
answer to the question of what links are available from a given page view depends
on how the page view is defined. The degree of difficulty in performing preprocessing
is highly dependent on the technology used to create the Web site content. Concep-
tually, the problem is simple - create a map or graph of the Web site. However, for
dynamically generated Web sites, especially ones utilizing personalization technolo-
gies, the question of equality for served content is not trivial. The design or content
of the “home page” for a Web site may be different depending on the user. Should
different versions of the home page be considered to be different pieces of content for
analysis purposes? A simple text matching algorithm for the served files may result
in an explosion in the number of “unique” pieces of content in a site map. It may

even result in a forest of site maps, instead of a single graph.

There are two major tasks associated with content and structure preprocessing -
determining what constitutes a unique page file, and determining how to represent
the content and structure of the page file in a quantifiable form. The first task relates
to the discussion in the paragraph above. Once the first task is solved, the structure
and content of a Web site need to be encoded in a way that is useful for performing
the various steps of Web Usage Mining. The task of defining a unique page file in
a way that is semantically meaningful is highly dependent on the Web site. For the

purposes of this thesis, it will be assumed that this step has already been completed
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for the Web site being analyzed. In practice, defining the site content is a manual
process that not only depends on the technology used to create the Web site, but also
the goals of the analysis. The rest of this chapter is concerned with the second task
of quantifying structure and content in ways that are suitable for supporting Web

Usage Mining.

4.1 Structure Preprocessing

The structure of a site is created by the hypertext links between page views and
the frame and image tags that populate a particular page view (referred as intra-
page structure). Several usage preprocessing steps can not be completed without
the site structure. In addition, the site structure is useful for identifying potentially
interesting rules. As will be described in Chapter 5, the Web site structure is required
for page view identification, and may be needed to identify users in the absence of a
unique user identifier such as cookies. Due to the presence of frames, the number of
potential page views for a Web site can be vast. It is not uncommon for every page
view on a site to consist of two or three frames. An example of a common page view
structure as displayed in a browser is shown in Figure 4.1. There is a top frame for
general site navigation , a left frame for more specific navigation, and a main frame
with some content. Assuming that there are = top frames, y left frames, and z main
frames for a site, the number of unique page views could be as high as x *y * 2. This
number can quickly become intractable. Therefore, the structure of a Web site needs
to be stored as a set of frames, F, with a list of associated links and targets. A target
is the page area that the link should be loaded into in the browser display. To further
complicate the situation, a single link can lead to the replacement of between one
and all of the frames in a page view. A formal definition of a site structure map for

use in Web Usage Mining is as follows, where M is a site map, h; is an HTML file,
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r is a link type, and g; is a target area:

M = [< Fy.. o F > (4.1)
F = {hy, Lo,..., L0} (4.2)
L = <r,(hi,g)l. - (hy, gp) > (4.3)

The link type indicates how the page file will be requested from the Web server.
The most common is get, which means the standard GET method will be used to
request the page file. Other common types include post, hidden post, frame, ftp, and
mail. The post and hidden post types both use the POST HTTP method for sending
data back to the Web server. Although the POST method is theoretically a one way
transfer of data from the client to the server, in practice, an application such as a
content server will send a page file to the client as a response to the data sent in
the POST. The difference between a regular post and a hidden post is in how the
client data are sent back to the Web server. A regular post appends the data to the
URI in CGI format (a series of text name/value pairs delimited by “&”). A hidden
post passes the data in the HT'TP header. This is an important distinction since, as
discussed in Chapter 3, the URI is logged as part of the CLF or ECLF formats, but
hidden POST data are not. If the source of the usage data contains the hidden POST
parameters, such as a packet sniffer log, then there is no distinction between the post
and hidden post types. The frame type refers to the use of the HTML “frame” tag.
In this case, page files listed as frames are automatically requested from the Web
server. The ftp and mail link types are just two common types that do not lead to
HTML page files being served. An example of a very simple Web site is given in
Figure 4.2. The site is essentially a tree structure, with each page view consisting

of one or two frames. The meaning of the three different usage types is explained in
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Section 4.2. The site map for Figure 4.2 is as follows, where the possible frame areas

are left, main, and top:

M = [index, (frame,1,left|frame, A, main)};
{1, (get, A, main), (get, B, main), (get, C, main) };
{2, (get, E, main), (get, F, main), (get, G, main)};
{3, (get, E1,main), ..., (get, E7, main)};
{4, (get, F1,main), ..., (get, F4, main)};
{5, (get, G1, main), ..., (get, G8, main)};
{4, (get, D, top)};
{B, (get, 2,left|E, main), (get, 2, left|F, main), (get, 2, le ft|G, main) };
{C, (get, H, top), (get, I, top), (get, J, top)};
{D};
{E, (get, 3,left|E1, main), ..., (get,3,left|E7, main)};
{F, (get,4,left|F1,main), ..., (get,4,left|F4, main)};
{G, (get, 5,left|G1, main), ..., (get, 5, left|G8, main)};
{B1};. . G {ETHA{FL}; . { P4} {G1); .. {G8);
{H};{1}{J}] (4.4)

The site map lends itself very naturally to an object-oriented schema, where a
site object contains a list of frame objects, and each frame object is made up of a
file, plus a list of link objects. In order to form page views from the site map, an
initial page view needs to be specified. In the case of the example site, the natural
initial view is the home page, 1-A, which will be automatically served as a result of a
request for index.html'. All other page views for the site can be formed by replacing
one or more frame areas with any of the candidate links in the active frames. For
example, page view 1-B is formed by following the link to B from frame 1. Page

view 2-F is formed from a single link in B, that replaces both frame 1 with 2 and

!By default, most Web servers fulfill a request for a directory with a file named index.html or
home.html. e.g. A request for www.sample.com will get index.html from the base directory for the
Web site.
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frame B with F. With 5 left frames and 25 main frames, a maximum of 125 page views
could be theoretically formed. However, since in this simple example each main frame
is only accessible from one left frame, there are only 25 page views resulting from
combinations of left and main frames. With the four single frame page views, this

site has 29 possible page views.

4.2 Content Preprocessing

Content preprocessing consists of converting the text, image, scripts, and other mul-
timedia files into forms that are useful for the Web Usage Mining process. Often,
this includes performing content mining such as classification or clustering. While
applying data mining to the content of Web sites is an interesting area of research in
its own right, in the context of Web Usage Mining the content of a site can be used
to filter the input to, or output from the pattern discovery algorithms. For example,
results of a classification algorithm can be used to limit the discovered patterns to
those containing page views about a certain subject or class of products. In addition
to classifying or clustering page views based on topics, page views can also be classi-
fied according to their intended use [84, 43]. Page views can be intended to convey
information (through text, graphics, or other multimedia), gather information from
the user, allow navigation (through a list of hypertext links), or some combination
uses. The intended use of a page view can also filter the sessions before or after pat-
tern discovery. The content for a site is obtained at the same time the site structure
is being mapped. As each HTML file is being fetched and parsed to construct the

site map, any text, graphics, or other media types can be cataloged as well.
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Table 4.1: Expected Characteristics of Web Page Types

Page Type | Expected Physical Expected Usage
Characteristics Characteristics
Head e In-links from most site pages | e First page in user sessions
e Root of site file structure
Media e Large text/graphic e Long average reference length
to link ratio
Navigation | e Small text/graphic e Short average reference length
to link ratio e Not a maximal forward reference
Look-up | e Large number of in-links e Short average reference length
e Few or no out-links e Maximal forward reference
e Very little content
Data Entry | ¢ “FORM” tag is present e Followed by a POST request

4.2.1 Content Usage Type

As first detailed in [84], page views are generally intended to be used in different
ways. An adaptation of the page usage types defined in [84] is as follows:

e Head Page—a page whose purpose is to be the first page that users visit, i.e.
“home” pages.

e Media Page—a page that contains a portion of the information content that
the Web site is providing.?

e Navigation Page—a page whose purpose is to provide links to guide users on
to content pages.

e Look-up Page—a page used to provide a definition or acronym expansion.

e Data Entry Page—a page used to explicitly gather information from the user.

Each of these types of pages is expected to exhibit certain physical characteristics.

For example, a head page is expected to have in-links from most of the other pages in

2Both [84] and [43] refer to this page type as a content page. However, to avoid confusion with
the discussions about Web site content, this thesis will refer to these pages as media pages. This is
because the information content will be represented by some form of media such as text or graphics.
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the site, and is often at the root of the site file structure. Table 4.1 lists some common
physical characteristics for each page type. Note that these are only rules-of-thumb,
and that there will be pages of a certain type that do not match the common physical
characteristics. There are several valid combinations of page types that can be applied
to a single page, such as a head-navigation page or a media-navigation page.

The page classifications should represent the Web site designer’s view of how each
page will be used. The classifications can be assigned manually by the site designer,
or automatically by using supervised learning techniques. In order to automate the
classification of site pages, the common physical characteristics can be learned by
a classification algorithm such as C4.5 [89] using a training set of pages. Several
experiments have been performed by Mitchell et. al. [46, 47] using supervised learning
techniques to assign page files to a predefined ontology. Another possibility is that
a classification tag can be added to each page by the site designer, using a data

structure markup language such as XML (Extensible Markup Language) [30].

4.2.2 Text Preprocessing

While the hypertext link structure of a Web site naturally lends itself to a directed
graph, quantifying the content in the page files is not as straight forward. The two
techniques that seem to be the most useful for supporting Web Usage Mining are
clustering and classification of the page files based on the text in the file. While
it would be interesting to take into account the graphics and other multimedia files,
research into automated multimedia clustering and classification is still relatively new,
and very resource intensive. In order to make use of any data mining algorithm, the
text in the page files must first be preprocessed. Once the text is preprocessed, any
number of clustering or classification algorithms can be run, such as the Hypergraph

clustering method [38] or Support Vector Machine classification method [40] that will
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be described in Chapter 6.

Unless XML tags are used to add semantic structure to a Web site, the problem
of quantifying page files is essentially the same as the quantification of unstructured
text documents. While some experiments have attempted to make use of HTML
display tags to infer semantic meaning, these methods do not work in the general
case. Wrapper projects, such as [92] have had some success in using regularities
in the HTML tag structure of Web sites, but methods such as these are extremely
brittle, and any deviations from the expected tag structure corrupts the algorithm.

Virtually all data mining systems that use the full text of documents rely on
some version of Salton’s vector space model [93]. The vector space model works by
defining each unique word in the corpus of documents as a separate dimension. Each
document can then be described by creating a vector where every word that is in
the document is represented by a weight. For words that do not appear in a given
document, that particular dimension of the vector is set to zero. The two major
decisions that must be made when using a vector space model for data mining are,
how to reduce the feature space (if any reduction is required) and how to weight the

terms.

Feature Space Reduction

Feature space reduction is often performed to improve the performance of data mining
or learning algorithms. It can be important for both improving the accuracy of the
algorithm and controlling the computation time. Feature space reduction can also
be desirable for other reasons such as limits on storage space or providing on-line
processing capabilities.

Although not usually referred to as feature space reduction techniques, the use

of stopwords and stemming algorithms do have the effect of limiting the number of
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unique terms in a vector space. Stopwords are defined as words that are known to be
generic and have no use in distinguishing documents. Articles and prepositions are
frequently included in stopword lists. In addition to removing stopwords, suffixes are
removed in order to prevent counting plural or active forms of words separately from
the normal form. This is referred to as stemming. For instance, the words “running”
and “runs” should both be converted to “run” to avoid unnecessary feature space
expansion. For text classification, Yang and Pedersen [110], have shown that feature
space reduction techniques that favor common terms outperform those that favor
rare terms. Information gain (IG) [73] is a term weight that meets this criteria and is
calculated using the conditional probability of a document being in a given category,
depending on the presence or absence of a term in the document. The information
gain, IG of a term, ¢ is calculated as follows, where the categories are ¢;’s, with

1<i<m:

m

IG(t) = —Zp(ci)log(p(ci)) (4.5)

n p(t)Zp(cz-lt)log(p(cilt))

+ p(t) ) plal-t)log(p(ci|t))

i=1

Recently, work from the Artificial Intelligence and Natural Language communities
has been employed to attempt some “intelligent” feature space reduction. Natural
Language techniques, in particular part of speech identification, can be used to pick
out the “important” words from a document. For example, nouns, proper nouns, or
verbs can be selected from each document, ignoring all other parts of speech. The
subset of proper nouns consisting of people, locations, and organizations is referred

to as named entities. Since named entities are not biased to commonly appearing
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words, feature space reduction through identification of named entities can result in

a similar reduction in the overall size of the data set.

Term Weighting

One of the most common weighting schemes used is referred to as term-frequency/
inverse-document-frequency (TFIDF) [94]. This weighting scheme starts with the
frequency of a term in a given document (TF), and multiplies this by the “inverse
document frequency” (IDF) of the term in the corpus. The IDF of a term is lower
the more documents it appears in. The TFIDF formula for a term, ¢; is as follows,
where n is the number of documents in the corpus and DF is the document frequency

for the term:

TFIDF(t;) = TF(t;) * log < - g(ti)> (4.6)

The idea is that the more documents a word appears in, the less likely it is to
be a good measure for distinguishing one document from another. If the added
“information” contained in the IDF is not needed for a particular algorithm, just
the term frequency (TF) can be used for a weighting scheme. The advantage of
using TF is that it can be calculated from just a single document, without having
to maintain and update corpus wide document frequencies. An even simpler term
weighting scheme that also has this advantage is binary weighting, where terms that
are present are assigned a weight of one, and those that are missing are assigned a

weight of zero.

Clustering and Classification

Three properties that are desirable in a clustering algorithm selected for a domain
such as unstructured text are relative immunity to a high number of dimensions, no

requirement to pre-specify the number of discovered clusters, and a simple method for
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evaluating the quality of the discovered clusters. One clustering method that meets
the first two criteria is hypergraph partitioning of association rules [55]. The third
property is difficult to meet quantitatively, because unlike classification there is no
predefined “correct value” to use to calculate measures such as precision or recall.
The method employed by the TopCAT (Top Clusters and Associations from Text)
system [38] is to use named entity identification as a form of feature space reduction,
which also leaves a data set that is very rich in semantic meaning. Clusters of named
entities are assumed to be qualitatively easier to understand than a list of stemmed
terms, allowing clusters to be evaluated by hand. Experimental results from the use
of the TopCAT system on news stories are presented in [38, 40].

For text classification, the number of categories is pre-determined and the quality
of the classification can be quantitatively verified. Therefore, the remaining property
of the three listed for text clustering, immunity to a high number of dimensions,
becomes critical for successful text classification. Support Vector Machines are ideally
suited for the problem of text classification since the complexity of the model learned
can be independent of the dimensionality of the feature space. Results presented
in [60] and [40] confirm this for several set of text documents. The details of the
use of Support Vector Machines for classification and hypergraph partitioning for

clustering will be presented in Chapter 6.



Chapter 5
Usage Preprocessing

The goal of usage preprocessing is to end up with a set of minable objects for a
particular Web site (or set of sites). The most common form of input is a Web server
log in the CLF or ECLF format, as described in Chapter 3. However, usage data can
also come from HTTP packet sniffers or application logs. Regardless of the source
of the usage data, the preprocessing steps shown in Figure 5.1 must be completed
at some point in order to create server sessions'. Since user episodes are defined as
a general subset of server sessions, there is a vast array of techniques that can be
used to identify episodes from sessions. This chapter also presents a few methods for

episode identification.

5.1 Server Session Identification

As shown in Figure 5.1, there are three major required steps and one optional step to
convert raw usage data into server sessions - data cleaning, user/session identification,
page view identification, and path completion. The optional steps are indicated by
dashed lines in Figure 5.1. This is very similar to the Clickstream Post-Processor
defined in [64], which separates the user and session identification into two separate

steps, and stores the information necessary for page view identification in a module

!'Depending on the technology used to create the Web site, the difficulty of each step may vary
greatly. This chapter describes the transformation of raw usage data into server sessions for com-
monly encountered scenarios.

41
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referred to as the Code Maintenance Application. However, the [64] architecture does
not deal with path completion or episode identification. Formally, a server session
(S) is a time ordered set of page views (V) for a single user during a single visit to a

Web site, along with some meta data (A).

S = [A: V... V] (5.1)
V = (Uz',h]’,tf,tl,te,{dl,...,dm},c> (52)
= {ala sy ak} (53)

Each page view V consists of a view identifier (v;), referring page file (h;), first
request time (¢/), last request time (#), view end time (#°), and an optional set of
submitted values (dy,...,d,). The final parameter, ¢, is a boolean parameter that
indicates whether the page view was inferred during path completion. For any page
view directly derived from usage data, ¢ will be false. The view identifier maps to the
set of page files that make up a particular page view for the Web site. The number
and type of the page files is determined by the design of the Web site. The referring
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page file is the file from which the page view request originated. In cases where the
user typed in a URI, selected a bookmark, chose from a history list, or has certain
privacy features activated, the referring page file will be null. The first and last times
correspond to the time of the first and last file requests for a given page view. The
first time field is used to order the page views in a session. Often, for single file page
views or fast connections, these times will be the same. The view end time is usually
inferred from the first file request time for the nezt page view. However, some client-
level collection methods can log the actual page view time, as discussed in Chapter 3.
If there is no next page view (e.g. the end of a session), the end time will be null. The
optional set of submitted values is used for page views that have form data. Since
not every page view allows data entry, this field can also be null. The meta data, A,
collected for each session depends on the technologies being used. For ECLF logs, the
session meta data will consist of an IP address (or possibly a set of IP addresses) and
an agent (usually the client-side browsing software and operating system). Cookies,
embedded session IDs, and other add-on technologies can add meta data to a session.

A sample Web log (ECLF with line numbers added for clarity) is shown in Fig-
ure 5.2. It is based on the sample Web site shown in Figure 4.2. Figure 5.2 will be

used throughout the remainder of this chapter as a running example.

5.1.1 Data Cleaning

Data cleaning is a site specific step that involves mundane tasks such as merging logs
from multiple servers and parsing the log into data fields. Typically, graphics file
requests are stripped out at this stage. This is easily done by checking for filename
suffixes such as “gif” or “jpg.” Graphics files can be left in the data set and rolled up
into page views in a later preprocessing step without any loss of generality. Situations

where this is desirable is for checking for agent or spider traffic through the site. The
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Figure 5.2: Sample Usage Data.
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amount of automated agents and spider programs traversing links and requesting files
from a Web site can often lead to skewed analysis results. The simplest method for
dealing with agent traffic is to check the agent field of the usage data. Many agents
and spiders voluntarily declare themselves by using an agent string other than one
that indicates a browser?. A simple string match during the data cleaning phase can
remove (or identify for further analysis) a significant amount of agent traffic. Another
indicator for identifying agents is an access of a “robots.txt” file. Agents that follow
the conventions of [1] will always check for the existence of a file named robots.txt
in order to get instructions about which pages are “off-limits” to agents. However,
some agents do not identify themselves through the agent field or by requesting the
robots.txt file. Heuristics such as looking for sessions that request only HTML files
but skip all of the associated graphics requests can be used to filter out agent traffic
after the user/session identification step. In order for this to occur, the graphics
request must be passed through to the next preprocessing phase. Other reasons for
leaving the graphics requests in the data are to check for incomplete page views (users
hit the “stop” button on the client browser) or to help identify the content served (the
same HTML file with different graphics may represent different content for reporting
purposes). The tradeoff involved with the decision to keep or remove the graphics
requests in the data cleaning phase has to do with the amount of data. A typical
commercial Web site may have ten graphics files for every HTML file served. This
results in an order of magnitude increase in the amount of data passed to the next
preprocessing step if graphics requests are not stripped out.

The status code and size fields are easily parsed and do not present any prepro-

cessing difficulties. However, the problem with the status codes is that they only

reflect the point of view of the Web server. If a separate content server is used, the

2The strings “mozilla” or “IE” appear in most browser agent fields.
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error codes can be meaningless. A content server can return nonsense in response
to a request, and as long as it can be sent via HTTP, the Web server will log the
request as a success (code 200). Similar to the status field, the use of a content server
can render the size field useless, and a dash will often be logged instead of a number
of bytes. While the status code and size of each request should be included in the
schema, any analysis needs to take into account the possibility of the values being

incorrect.

The final step of the data cleaning task is to normalize the URIs and parse any
CGI data. Most Web servers treat a request for a directory as a request for a default
file such as “index.html” or “home.html”. The directory request may come in with
or without a trailing slash. Also, the “www” in the front of a URI is optional.
This means that requests for sample.edu, www.sample.edu, www.sample.edu/, and
www.sample.edu/index.html are all for the same file. The data cleaning must chose
a common form for each page file. As shown in Figure 5.2, the site name is not
logged in the request, but is always logged in the referrer field. This is because,
by definition, all requests are coming to the same Web server and the site name is
known. However, referring files can come from other Web sites, so the full URI is
used. The site name (e.g. www.sample.edu) must either be stripped off of all requests
and internal referring page files, or added on to every request. Finally, any URIs that
have CGI data attached must be parsed further to break up the name/value pairs

into separate fields.

The sample log shown in Figure 5.2 has already been through part of the data
cleaning step. In this case, the graphics requests have been stripped out. The only
tasks remaining are to fully parse the data fields and normalize the URIs. For the
example, this simply means breaking up the request field into it’s three component

parts and stripping the site name from the internal requests. The request and referrer
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in line 4 require URI normalization. The CGI data for the referring URIs in lines 1

and 4 must also be parsed.

5.1.2 User and Session Identification

As previously mentioned, common technologies such as cookies and embedded session
IDs make user identification almost trivial. Client-side tracking methods also remove
most of the difficulties associated with identifying users. However, the level of detail
and accuracy of the data collected by the various methods are inversely proportional
to the invasiveness of the method in terms of user privacy. Client-side tracking pro-
vides by far the most accurate usage data, but is also the largest invasion of privacy.
Cookies are next, followed by registration and embedded session IDs. The drawbacks
associated with the more intrusive methods is that data are available for a smaller
percentage of the visitors to a Web site. Relatively few users are willing to accept a
client-side tracking mechanism, and usually only in exchange for substantial benefits
such as free internet access or a free computer [4, 16, 12]. In contrast, embedded
session IDs will provide data on every user that accesses the Web site. User regis-
tration provides a great method for tracking individuals across multiple machines or
browsers, but will not necessarily be acceptable to everyone who visits a Web site.
A requirement for users to register may end up driving traffic away from a site. Fig-
ure 5.3 provides a list of the most common user identification methods along with
the pros and cons.

Unless one of the tracking mechanisms discussed above is used, only the IP ad-
dress, agent, and the server-side click-stream are available to identify users and server

sessions. Some of the typically encountered problems are:

1. Single IP address/Multiple Server Sessions - Internet service providers (ISPs)
typically have a pool of proxy servers through which users can access the Web.



Method Description Privacy Advantages Disadvantages
Concern
IP Address Assume each unique IP Low Always available. No Not guaranteed to be
& Agent address/Agent pair isa additional technology unique. Defeated by
unique user. required. random or rotating | P.
Embedded Use dynamically Low/ Always available. No concept of arepeat
Session ID generated pagestoinsert | Medium | Independent of IP visit. Requires fully
ID into every link. address. dynamic site.
Registration | Usersexplicitly sign-in Medium | Cantrack single Not all users may be
to site. individuals, not just willing to register.
browsers.
Cookie Save an identifier onthe | Medium/ | Can track repeat visits. | Can be disabled.
client machine High Negative public image.
Software Program loaded into High Accurate usage datafor | Likely to be refused.
Agent browser that sends back asingle Web site. Negative public image.
usage data.
Modified Browser records usage Very Accurate usage data Users must explicitly
Browser data High across entire Web ask for software.
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Figure 5.3: Common User Identification Methods.

A single proxy server may have several users accessing a Web site, potentially
over the same time period.

. Multiple IP address/Single Server Session - Some ISPs or privacy tools randomly
assign each request from a user to one of several IP addresses. In this case, a
single server session can have multiple IP addresses.

. Multiple IP address/Single User - A user that accesses the Web from different
machines will have a different IP address from session to session. This makes
tracking repeat visits from the same user difficult.

. Multiple Server Sessions/Single User - This occurs when a user opens up more
than one browser window, and accesses different portions of a Web site simul-
taneously.

. Single Client/Multiple Users - This occurs when more than one individual uses
the same computer, such as families or public access machines.

The first two problems only occur for the IP address/agent method of user iden-

tification. Embedded session IDs have no notion of a repeat visit, meaning the third
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problem, multiple IP address/single user, is irrelevant for this method. All of the
identification methods except the modified browser are subject to the fourth problem
- multiple server sessions/single user. Finally, all of the identification methods except
user registration are subject to the last problem, single client/multiple users, unless

some sort of browser login is used?.

Once users have been identified, the click-stream for each user must be divided
into sessions. Since page requests from other servers are not typically available, it is
difficult to know when a user has left a Web site. A thirty minute timeout is often
used as the default method of breaking a user’s click-stream into sessions. The thirty
minute timeout is based on the results of [34], where 1.5 standard deviations were
added to the mean inactivity length of 9.3 minutes to get a cutoff of 25.5 minutes.
This cutoff has been rounded up to 30 minutes as an industry standard. When a
session ID is embedded in each URI, the definition of a session is set by the content
server. Modified browsers which track usage across the entire Web are able to track
the next click outside of a specific Web site, and can declare a server session to be
ended when a user moves to a different site or exits from the browser (Although a
timeout must still be used for the case where the browser is left open, but no browsing

activity occurs).

For the “worst-case”, where only the information in the ECLF Web log is available,
users and sessions should be considered to be the same since there is no way of
knowing if a different session from the same IP address/agent pair is the same user.
As first presented in [84], a reasonable assumption to start with is that each different
agent type for an IP address represents a different session. The next step of the
heuristic for session identification is to use the referring page file. If the referring

page file for a request is not part of an open session, it is assumed that the request

3Both Internet Explorer and Netscape have this feature.



50

is coming from a different session. The final part of the heuristic is the handling of
requests with the same IP address and agent that could have come from more than
one active session. The heuristic assigns the request to the session that is closest to
the referring page at the time of the request. Closeness is defined as the minimum
number of links that would need to be traversed from the current page view in order to
have the referring page file displayed in the client browser. In the case where multiple
sessions are the same distance from a page request, the heuristic assigns the request
to the session with the most recent referrer access in terms of time. In theory, static
sites can also be subject to proxy-level caching. This means that multiple sessions can
access the same page file with only a single request making it back to the Web server
log. However, the guiding principle of the session identification heuristic is to assume
the simplest solution in the absence of any additional information. Also, because
proxy-level caching can be effectively defeated by dynamic content or disabled with
negative expiration dates for static content, the heuristic does not attempt to deal

with the effect of proxy-level caching on sessions.

The session identification heuristic is summarized in Table 5.1. Line 7 checks to
see if the session has timed out or if the referring file is not present in any of the
open session histories. If so, a new session is opened in lines 8 and 9. Since the
log has already been sorted by IP address/agent, all of the open session histories
are potential candidates for the page file access being processed. Line 11 calls the
function Distance shown in Table 5.2. Given a list of histories and a page file, f, the
Distance function finds the history that most recently accessed f. Recency is defined
as the number of page files between the end of the history and f (line 9 of Table 5.2
checks for this). In the case of ties, the time between the last file access and the last
access of f in the histories is compared (shown in line 13). Finally, if the times are

equivalent, by default, the access is assigned to the history with the lower index. A
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Table 5.1: Session Identification Heuristic.

Heuristic Identify

1. Let H; = {fi,..., fn} denote a time ordered session history.
2. Let l;,f;,rj, and t; denote a log entry,

request, referrer, and time respectively.

3. Let T denote the session timeout.

4. Sort data by IP address,agent, and time.

5. for each unique IP/Agent pair do

6. for each [; do

7. if ((tj—tjfl) >T)\/7’j =) {H(),...,Hm} then
8. Increment i

9. Add lj to Hi

10. else

11. assign = Distance(H, ;)

12. Add lj to Hassign

13. end;

random assignment could also be used to break ties. The index of the history that f
should be assigned to is returned by the Distance function, and line 12 of the session
identification heuristic uses the returned index to add the page file to the appropriate
history.

Applying the session identification heuristic to the Figure 5.2 log, lines 4,5,6, and 8
would be identified as a separate session (designated as session 3) due to the different
agent. Figure 5.4 shows the remaining file accesses, which are all for the IP/Agent
combination of “123.456.78.9/Mozilla/4.2 (Win98,I).” As shown, the accesses are
assigned to session 1 until time ¢, (From lines 9 through 11 of the example log),
where a request is made for index.html and the referrer is null. This is not part
of the current active session, so a new session is opened. The requests for 1.html
and A.html at time ¢, could be a part of either open session, since they both contain
index.html. The calls to Distance result in both requests being assigned to session

2. The only remaining request that could belong to either session is at time ¢4, where
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Table 5.2: Distance Function.

Function Distance(H, f)

Let H; denote a time ordered session history.

Let f denote a page file.

set min = oo

for each H; € H do
d; = H;.size() — Hj.index(f)
t;i=H;.t, — Hi.tf

9. if (d; < min)

10. assign = ¢

11. min = d;

12. else if (d; = min)

13. if (t; < tassign)

14. assign = 4

15. return assign

16. end;

NSOt W

B.html is requested from 1.html (Line 13 of the log). Again, 1.html is closer to the
end of the session 2 history, causing the heuristic to assign the file access to session
2. Note that this is not guaranteed to be correct if client-side caching is present. The
user for session 2 could have left the site after viewing the home page, and the session
1 user could have used the “back” button to get to the home page before requesting
page B.html. The remaining requests at times ¢5 through ¢;; can only have come
from one of the two open sessions. The full results of applying the heuristic to the

Figure 5.2 example are shown in Figure 5.5.

5.1.3 Page View Identification

The page view identification step determines which page file requests are part of the
same page view and what content was served. This is necessary to provide meaningful

results in the pattern analysis phase. If this step is not performed, the discovered
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H, ={index, 1,3}
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t,: New Session:
i=2; H, = {index}
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Call Distance:
d, =4-1=3;t =62
d,=1-1=0;t,=0
return assign = 2
H, = {index, 1}
Open Session:
I = index
Call Distance:
d=41=3;t =64
d,=2-1=1t,=2
return assign = 2
H, ={index, 1,3}
t;: Open Session:
r, = C; Distance returns assign = 1
H, ={index,1,A,C, H}
t,- Open Session:
rg=1
Call Distance:
d, =52=3;t =85
d,=3-2=1;t,=23
return assign = 2
H,={index,1,A,B}
]
]
]

Figure 5.4: File Accesses for “123.456.78.9/Mozilla/4.2 (Win98,1)”
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Session # IP Address/Agent Time/Date Reguest URI Referring URI
1 123.456.78.9/ 1/21/2000:15:04:41 index.html www.search.edu/?key=sample

Mozilla/4.2 (Win98,1) 1/21/2000:15:04:41 1.html index.html
1/21/2000:15:04:41 A.html index.html
1/21/2000:15:05:18 C.html 1.html
1/21//2000:15:06:01 H.html C.html
1/21/2000:15:06:36 |.html C.html

2 123.456.78.9/ 1/21/2000:15:05:43 index.html -

Mozilla/4.2 (Win98,1) 1/21/2000:15:05:43 1.html index.html
1/21/2000:15:05:45 A.html index.html
1/21/2000:15:06:06 B.html 1.html
1/21/2000:15:06:18 2.html B.html
1/21/2000:15:06:19 F.html B.html
1/21/2000:15:07:24 G.html 2.html
1/21/2000:15:07:49 4.html F.html
1/21/2000:15:07:49 F1.html F.html
1/21/2000:15:09:59 5.html G.html
1/21/2000:15:10:02 G3.html G.html

3 123.456.78.9/ 1/21/2000:15:04:44 index.html www.search.edu/?key=sample

Mozilla (IE5.0,WinNT) 1/21/2000:15:04:45 1.html index.html
1/21/2000:15:04:45 A.html index.html
1/21/2000:15:05:19 D.html A.html

Figure 5.5: Results of Session Identification Heuristic.

patterns can be dominated by page files that make up a single popular page view.
Page view identification relies heavily on the results of the structure and content
preprocessing for the site. While the exact content served as a result of each user
action is often available from the request field in the Web server logs, it is sometimes
necessary to have access to the content server information as well. Since content
servers can maintain state variables for each active session, the information necessary
to determine exactly what content is served by a user request is not always available
in the URI.

The first part this step is to identify the content served by each page file request
in a session. The results of the content preprocessing are used to map each parsed
URI (or combination of URI and content server information) to a particular piece of
content (or content that is considered equivalent for reporting and analysis purposes).

The second part of page view identification is determining which page files make
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up each page view. Each session must start with a seed page view - i.e. an initial page
file or set of page files from which all subsequent page views will be derived. In the
vast majority of cases, the seed page view is made up of a single file, or starts with
a single file that defines the frame structure and immediately causes additional page
files to be requested. It is very rare for an unrelated site to link to more than one page
file of a different site in a single hypertext link. However, it is possible, and for these
cases all of the page files contributing to the seed page view would have to be explicitly
entered into the algorithm. Once the seed page view is specified for a session, each
subsequent request is checked against the site structure to determine which frame (or
frames) is being replaced. The “new” page view consists of the requested file plus
all of the page files that are remaining in the browser display from the previous page
view. Each distinct page view discovered in a log is given an identifier. The page
views are not given identifiers in advance, since for a large complex site the number
of possible page views is vast, and many of them may never be accessed in a given

set of usage data.

The page view identification step can find errors or anomalies in a Web site by
identifying sessions with incomplete page views. As mentioned in the discussion about
data cleaning, if the graphics files are not stripped out, a session with complete page
views except the graphics files can indicate an automated agent or spider?. If one
page file of a particular page view is frequently missing, it may indicate an error, or a
particularly slow-loading view that users are clicking on “stop” before the page view

is completely loaded.

The algorithm for converting page file accesses into page views is shown in Ta-

ble 5.3. The initial page view is set in line 6. Line 8 checks to see if there are already

4This can also mean a user has turned off his or her graphics in order to speed up the browsing
process.



Table 5.3: Page View Identification Algorithm.

Algorithm PageView

1
2
3
4
d.
6
7
8

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

. Let O(f1,..., fn) denote an open list of page files.

. Let T'(ty,...,1t,) denote the times associated with O
. Let Cy(fi1,..., fm) denote the current view.

. Let r, denote the view referring file.

Let f; and r; denote the requested and referring files.
. Set initial page view, k =0

. for each log entry, L;, do

if O = () then
set ry, =1 1 =1
if r, © C, then
C, = Complete(S, ;)
if r; = r, then
add f; to O; t; to T
if (I = FindLink(O,r,))) # NULL then
C, = ReplaceView(O, 1)
increment k
set vy = Cy; hy = ry; ¢ =false
set t/ = min(7T); t = max(T)
set O =)
else
Incomplete view, run error handling
set ¢y, =null

end;
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files in the open list, O. Since a link may replace multiple page files at once, an “open
list” of files must be maintained until a matching link is found. An empty open list
indicates that a page view was just formed with the last log entry, and the current
log entry is the start of a new page view. The referring file for the view and the end
time for the previous page view are set in line 9. If the view referring file is not part
of the previous page view, a cached page access must have occurred, and the function
Complete is call in line 11. The minimum requirements of the Complete function are
to return a page view that contains the referring file in order for the Page View algo-
rithm to continue. Whether or not it actually adds the cached views to the session is
optional. For the current discussion, it will be assumed that the Complete function
simply returns the most recent page view from session S that contains the file, r,. In
the next section, a version of the Complete function that adds cached page views to

the session will be presented.

Continuing with the PageView algorithm, line 12 checks to see if the current
referring file is the correct one for the view being built, and if so, adds the requested
page file and the time to the appropriate list in line 13. If the referring file changes
while a new view is being built, an error handling routine is called at line 21. The
actions of the error handling routine can vary. The entire session can be thrown
out as corrupt, or the current contents of each frame location can be declared to
be a page view (even if it is not valid by the site structure) and the algorithm can
continue. This type of error can only occur when a link results in more than one page
file requests. Any standard hypertext link will result in a single page file request and
a new page view after a single file is added to the open list. The FindLink function
in line 14 checks to see if the contents of the open list are equivalent to any of the
links for the referring file. If a matching link is found, the current view is set in line

15 with a call to ReplaceView. The ReplaceView function takes the current view,
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Table 5.4: FindLink and ReplaceView Functions.

Let F(fi,..., fn) denote a list of page files.
Let r denote a single page file.

Let L(p,cy,-..,cn) denote a global list of links.
Function FindLink(F,r)

1. for each L where p =r, do

2. ifLi(r,c)=F

3. return ¢

end;

Function ReplaceView(F), 1)

1. for each ¢ € L;, do

2. set F(f)=¢

3. return F'

end;

C,, and replaces the appropriate frame locations with the page files for link [. The
FindLink and ReplaceView functions are shown in Table 5.4. Lines 16 through 18
add the new page view and parameters to the session . As shown in line 19, after
each match and creation of a new page view, the open list, O, is cleared in order to
start building a new page view. Finally, line 22 sets the last time to null since there

are no subsequent file requests for the session.

For the case of the example site, each URI directly identifies a distinct piece of
content, making the content identification step trivial. For the example, the identifiers
will consist of the names of the page files comprising the page view with the file
extension stripped off. The index.html page file is used solely to set up the frame
schema - in this case a left frame and a main frame. Therefore, all of the sessions
for this site should start with requests for index.html, 1.html, and A.html, which
leads to a seed page view of 1-A, e.g. “the home page.” Each of the three sessions

in the example start with the home page view, as expected. Figure 5.6 shows how
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the algorithm would be applied to session 1. After the initial page view of “1-A” is
set, the request for C.html at time t; is read. The referring file, 1.html, is part of
the current page view, so FindLink is called, and the fourth link from equation 4.4 is
returned. This is used in a call to ReplaceLink to add page view 1-C to the session.
Page view H is similarly added at time ¢3. However, at time t;, the referring file,
C.html, is not part of the current page view, H. Therefore, Complete is called, which
returns “1-C” as the last page view containing C.html. The final page view, I, is
then added to the session. Figure 5.7 shows the results of applying the page view

algorithm to the entire example log.

5.1.4 Path Completion

The final major step for preprocessing usage data is that of inferring cached page
references. As discussed previously, the only verifiable method of tracking cached
page views is to monitor usage from the client side with either a software agent
or modified browser. However, in the absence of a client-side tracking mechanism,
the referrer field for each request can be used to detect some of the instances when
cached pages have been viewed. As shown in the PageView algorithm example, if the
referring page file for a page view is not part of the previous page view, the user must
have accessed a cached page. Similar to identifying sessions with only the IP address,
agent, and site structure, there is no provably correct algorithm for determining what
cached pages were viewed, only heuristics.

There are three common methods that browsers provide to users for accessing a
cached page view. The most common method (based on the results of GVU sur-
veys [34]) is the use of the back button provided at the top of the popular browsers.
The browser maintains a history stack that has page views pushed on and popped off

throughout a user session. The second most common method of cached page access
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Set Initial Page View:

V,="1-A" h, = search.edu/?key=sample

=t =1t
Session 1 = {1-A}
C,={1,2}
Check for referrer in Current View:
time =t,
=1
O={c},r,=1
Call FindLink:
return 1=4 --> {1,(get,C,main)}
Add Page View to Session:
v,="1-C" h1 =1
tf=t;t'=t
Session1={1-A,1-C}
C,={1.¢}
Check for referrer in Current View:
time = t,
o=t
O={un}, r,=C
Call FindLink:
return 1=32 --> {C,(get,H,top)}
Add Page View to Session:
v, = "H" h2 =C
L=t =t
Session1={1-A,1-C,H}
C,={x}
Check for referrer in Current View:
time =t,
tZe = t7
O={1}, r,=C
Call Complete:
return {1, c}
Call FindLink:
return 1=33 -> {C,(get,I,top)}
Add Page View to Session:
v, ="1" h3 =C
th=t;t =t
Session1={1-A,1-C,H, I}
Set Final End Time:
¢ =null

Figure 5.6: Session 1 Page Views
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Session# ||First Time Last Time End Time Page View Referring File

1 1/21/2000:15:04:41 1/21/2000:15:04:41 1/21/2000:15:05:18 1-A www.search.edu/?key=sample
1/21/2000:15:05:18 1/21/2000:15:05:18 1/21//2000:15:06:01  |1-C 1.html
1/21//2000:15:06:01 1/21//2000:15:06:01 1/21/2000:15:06:36 H C.html
1/21/2000:15:06:36 1/21/2000:15:06:36 - | C.html

2 1/21/2000:15:05:43 1/21/2000:15:05:45 1/21/2000:15:06:06  |1-A -
1/21/2000:15:06:06 1/21/2000:15:06:06 1/21/2000:15:06:18  |1-B 1.html
1/21/2000:15:06:18 1/21/2000:15:06:19 1/21/2000:15:07:24  |2-F B.html
1/21/2000:15:07:24 1/21/2000:15:07:24 1/21/2000:15:07:49 |2-G 2.html
1/21/2000:15:07:49 1/21/2000:15:07:49 1/21/2000:15:09:59  |4-F1 F.html
1/21/2000:15:09:59 1/21/2000:15:10:02 - 5-G3 G.html

3 1/21/2000:15:04:44 1/21/2000:15:04:45 1/21/2000:15:05:19  |1-A www.search.edu/%key=sample
1/21/2000:15:05:19 1/21/2000:15:05:19 - D A.html

Figure 5.7: Results of Page View Identification Algorithm.

is a click on a hypertext link that has already been traversed in the current session.
The link may or may not be in the history stack, depending on the previous path
taken through the Web site. The third method is to directly access a page from the
recent history list provided by the browser. Since it is impossible to determine which
method was used to reference a cached page view, the path completion heuristic as-
sumes that the most popular method, the back button, is used by default. If the page
view is not in the back stack, the full session history is searched for the page view.
For the session history search, it is assumed that the shortest available path was used
to reach the page. Because the session history contains all of the page views that
are available from the direct history list access method, the direct access method will
never be used by the heuristic. While the conclusion of the heuristic is not guaranteed

to be correct, it will always be consistent given a specific situation.

The final task of the path completion heuristic is to assign a time to the inferred
page views. In the absence of any additional information, the heuristic assigns a
constant view time for each of the cached page views. The assumption is that the

user is revisiting the pages simply for navigation purposes.

The path completion heuristic is shown in Table 5.5. It is a function called from

the PageView algorithm when the view referring file is not in the current page view.
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Lines 6 through 9 build the stack that would be associated with the back button for
the session, S. Line 10 sets the location of the “next” page view in the session. Lines
12 through 16 loop through the back stack looking for the referring file, r,. If the
referring file is found, the portion of the back stack popped off is added to the session.
If r, is not found, the full session history is searched in lines 18 through 22. Finally,
lines 24 through 26 set the times for the added page views based on a fixed time
interval, T'. The page view that contains r, is returned by the function to PageView.

Figure 5.8 shows how the heuristic would be run on session 1. A back stack is
built from the session history and then checked for r,, which in this case is equal to
C. C is immediately found in the page view on the top of the stack, 1-C. The times
for the inferred page view and the new end time for page view H are set and 1-C is
returned to the PageView algorithm. Session 2 is more complicated and the portion
from time ¢,0 on is shown in Figure 5.9. The back stack does not include the full
history since the previous use of the back button earlier in the session popped 2-G
and one instance of 2-F off the stack. The referring file, G, is not found in the back
stack and the full history must be searched. Page view 2-G is added to the session at
index 7. The back stack is then re-checked, and 2-F is inserted at index 7 (pushing
2-G to index 8) in order to complete the path from 4-F1 to 2-G. The appropriate
times are updated, and 2-G is returned to PageView. The results of running the

heuristic on the full example are shown in Figure 5.10.

5.2 Episode Identification

Episode identification is an optional preprocessing step that can be performed after
the required preprocessing steps. An episode is defined by the W3C as a semantically
meaningful subset of a user session. Since only server sessions are available in this

case, episodes are more narrowly defined as subsets of server sessions. Any num-



Table 5.5: Path Completion Heuristic.

Function Complete(S,r,)

1
2
3
4
d.
6
7
8

© ¢

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

. Let S denote a session of page views, V;
. Let r, denote the referring page file

. Let stk denote a stack

. Let T denote a fixed time interval

for each V € S do
if h; # null then
stk.push(v;_1)
else
stk.pop()
set n = S.size() + 1
set notfound = true
while ((vs = stk.pop()) # null) AND notfound
add vs to Siepmpy with c=true
if r, € vy then
set notfound = false
insert Siem,p into S at n
if (notfound) then
for j =n —2 down to 1 do
if r, € v; then
insert V; into S with c=true at n
set 7, = h;
goto 11
set newsize = S.size()
for k = newsize down to n do
set 1 =t1,,
set th = t¢ — T;tf =th
set t¢ | =t/
return Unewsize
end;
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Figure 5.8: Path Completion for Session 1.
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Figure 5.9: Path Completion for Session 2.
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Session # |[First Time Lot Time End Time Page View  |Referring File Inferred
1 1/21/2000:15:04:41 1/21/2000:15:04:41 1/21/2000:15:05:18  J1-A www.search.edu/ &key=sample FALSE
1/21/2000:15:05:18 1/21/2000:15:05:18 1/21//2000:15:06:01 _|1-C L.html FALSE
1/21//2000:15:06:01 1/21//2000:15:06:01 1/21/2000:15:06:34 |H C.html FALSE
1/21/2000:15:06:34 1/21/2000:15:06:34 1/21/2000:15:06:36 _ |1-C - TRUE
1/21/2000:15:06:36 1/21/2000:15:06:36 - | C.html FALSE
2 1/21/2000:15:07:03 1/21/2000:15:05:45 1/21/2000:15:06:06 1-A - FALSE
1/21/2000:15:07:16 1/21/2000:15:06:06 1/21/2000:15:06:18 _ |1-B 1.html FALSE
1/21/2000:15:07:28 1/21/2000:15:06:19 1/21/2000:15:07:24  |2-F B.html FALSE
1/21/2000:15:08:34 1/21/2000:15:07:24 1/21/2000:15:07:47 _|2-G 2.html FALSE
1/21/2000:15:08:57 1/21/2000:15:07:47 1/21/2000:15:07:49 2-F - TRUE
1/21/2000:15:08:59 1/21/2000:15:07:49 1/21/2000:15:09:55  |4-F1 F.html FALSE
1/21/2000:15:11:05 1/21/2000:15:09:55 1/21/2000:15:09:57 2-F - TRUE
1/21/2000:15:11:07 1/21/2000:15:09:57 1/21/2000:15:09:59 _ |2-G 2.html TRUE
1/21/2000:15:11:09 1/21/2000:15:10:02 - 5-G3 G.html FALSE
3 1/21/2000:15:04:44 1/21/2000:15:04:45 1/21/2000:15:05:19  |1-A www.search.edu/key=sample FALSE
1/21/2000:15:05:19 1/21/2000:15:05:19 - D A.html FALSE

Figure 5.10: Results of Path Completion Heuristic.

ber of definitions for episodes can be manually created for a Web site based on the
content. For example, episodes of only the product pages viewed on an e-commerce
site, or sports page views from a news site can be created. Another popular episode
definition is the subset of page views that deal with the “shopping cart checkout”
process’. However, if some assumptions are made about the way users browse a Web
site, semantically meaningful episodes can be identified without any knowledge of the
specific content of a site. Three methods based on such assumptions, page type, refer-
ence length and maximal forward reference, make an attempt to identify semantically

meaningful episodes based on the page usage type.

5.2.1 General Episode Model

Using the concept of auxiliary and media page references, there are two ways to
define episodes, as shown in Fig. 5.11, where auxiliary and media page references are
labeled with an A or M respectively. The first would be to define an episode as all

of the auxiliary references up to and including each media reference for a given user.

5E-commerce sites often use separate definitive tracking mechanisms available through commer-
cial content servers such as [6] for tracking critical events such as this.
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Figure 5.11: Auxiliary-Media and Media-Only Episode Types

Mining these auziliary-media episodes would essentially give the common traversal
paths through the web site to a given media page. The second method would be to
define an episode as all of the media references for a given user. Mining these media-
only episodes would give associations between the media pages of a site, without any
information as to the path taken between the pages. Media pages can be identified by
examining the content, structure, or usage of a site. The page type method classifies
pages based on the content. The reference length and maximal forward reference
methods rely on usage data to identify the usage type of a page. While none of the
methods relies on the structure of a site, as will be shown in Chapter 8, the maximal
forward reference method is heavily dependent on the structure of a Web site, even

though its classification is based on usage patterns.

5.2.2 Page Type Method

The page type episode identification method relies on the page views being pre-
classified for usage type. As discussed in Chapter 4, The usage type for a page can be

labeled by hand, or a classification algorithm can be used based on the content of the
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Session #/ Page Views
Episode # Page Type Reference L ength Maximal Forward Reference
1/1 1-A,1-C,H 1-A,1-C 1-A,1-C,H
1/2 1-C, | H, 1-C, | 1-C, |
2/1 1-A, 1-B, 2-F, 2-G, 2-F, 4-F1 1-A, 1-B, 2-F 1-A, 1-B, 2-F, 2-G
2/2 2-F, 2-G,5-G3 2-G, 2-F, 4-F1 2-F, 4-F1
2/3 2-F, 2-G, 5-G3 2-F, 2-G, 5-G3
3/1 1-A, D 1-A,D 1-A,D
Figure 5.12: Auxiliary-media Episodes
Session #/ Page Views
Episode # Page Type Reference Length Maximal Forward Reference
1/1 H, I 1-C, | H, I
2/1 |[4-F1, 5-G3 2-F, 4-F1, 5-G3 2-G, 4-F1,5-G3
3/1 |[D D D

Figure 5.13: Media-only Episodes

pages to automatically label each page. With this method, the label for each page is
constant across all users. This creates a problem for the page views that are a mix
of media, and one of the auxiliary usage types such as navigation. For the purposes
of episode identification, each page view must be declared as media, or auxiliary.
For the example site and log in Figures 4.2 and 5.2, the page views that contain
a pure media page in the main frame will be classified as a media page view and all
other combinations (navigation or mixed) will be classified as auziliary page views.
This leads to the auziliary-media episodes shown in Figure 5.12 and the media-only

episodes shown in Figure 5.13.

5.2.3 Reference Length Method

The reference length episode identification method is based on the assumption that
the amount of time a user spends on a page correlates to whether the page should be
classified as a auxiliary or media page for that user. Figure 5.14 shows a histogram
of the lengths of page file references between 0 and 600 seconds for a server log from

the Global Reach Internet Productions (GRIP) Web site [2].
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Figure 5.14: Web Page File Reference Lengths (seconds)

Qualitative analysis of several other server logs reveals that like Fig. 5.14, the
shape of the histogram has a large exponential component. However, when page
views are taken into account, instead of page files, the shape of the curve is slightly
different, as shown in Figure 5.15. This histogram was generated from an e-commerce
site with three frames per page view. The difference between the two curves can be
accounted for by the removal of the reference lengths that belong to frame components
that are requested immediately before another component for the same page view.
This can be seen in the example log for all of the page file requests for file 1.html.
The second page view component, file A.html, is always requested immediately after
1.html, giving the appearance of a very short view length. Once 1.html and A.html
are rolled into the same page view, the short reference lengths are absorbed by the

page view reference lengths.

All of the curves can be reasonably fit to a heavy tailed gamma distribution.
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Figure 5.15: Web Page View Reference Lengths (seconds)

The difficulty comes in determining the shape parameters. As shown in Figure 5.15,
shape parameters of 1.3 and 20, with an offset of 100 to create the heavy tail, fits
this particular Web site quite well. However, the parameters are not constant across
all Web sites. Since the reference length method ultimately relies on estimates, a
pure exponential distribution will be used to model the view length curves. Although
an exponential distribution does not fit as well as a gamma distribution with the
appropriate shape parameters, it can be applied uniformly without any knowledge of
a particular Web site.

It is expected that the variance of the times spent on the auxiliary pages is small,
and the auxiliary references make up the lower end of the curve. The length of media
references is expected to have a wide variance and would make up the upper tail that
extends out to the longest reference. If an assumption is made about the percentage
of auxiliary references in a log, a reference length can be calculated that estimates

the cutoff between auxiliary and media references. Specifically, given a percent of
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auxiliary references, the reference length method uses a maximum likelihood estimate

to calculate the time length t as shown in (5.4).

_ =In(l—v)
t = —nl=n

where v = % of auxiliary references,

A = reciprocal of observed mean reference length. (5.4)

The definition of (5.4) comes from integrating the formula for an exponential
distribution, from 7 to zero. The maximum likelihood estimate for the exponential
distribution is the observed mean. The time length t could be calculated exactly by
sorting all of the reference lengths from a log and then selecting the reference length
that is located in the yx1log_size position. However, this increases the complexity of
the algorithm from linear to O(nlogn) while not necessarily increasing the accuracy
of the calculation since the value of v is only an estimate. Although, as mentioned,
the exponential distribution does not fit the histograms of server log data exactly, it
provides a reasonable estimate of the cutoff reference length. It would be interesting
to examine the cost-benefit tradeoffs for fitting gamma distributions to a particular
site and using the more accurate cutoff times.

The reference length approach makes the assumption that all of the last refer-
ences are media references, and ignores them while calculating the cutoff time. This
assumption can introduce errors if a specific auxiliary page is commonly used as the
exit point for a Web site. While interruptions such as a phone call or lunch break can
result in the erroneous classification of a auxiliary reference as a media reference, it
is unlikely that the error will occur on a regular basis for the same page. A reason-
able minimum support threshold during the application of a data mining algorithm

is expected to weed out these errors.
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Once the cutoff time is calculated, either auxiliary-media episodes or media-only
episodes can be identified. It is important to note that unlike the page type method,
results generated with the reference length method only apply when those pages are
used as media references. For example, an association rule, A = B, is normally taken
to mean that when A is in a set, so is B. However, if this rule has been generated with
the reference length method, it has a more specific meaning, namely that A implies
B only when both A and B are used as media references. This property allows data
mining on media-only episodes to produce rules that might be missed by including
all of the page references in a log. If users that treat page A as an auxiliary page
do not generally go on to page B, inclusion of the auxiliary references into the data
mining process would reduce the confidence of the rule A = B, possibly to the point
where it is not reported. Depending on the goals of the analysis, this can be seen
as an advantage or a disadvantage. The key is that auxiliary-media episodes can be

used when this property is undesirable.

The one parameter that the reference length approach requires is an estimation
of the overall percentage of references that are auxiliary. The estimation of the
percentage of auxiliary references can be based on the structure and media of the
site or experience of the data analyst with other server logs. The results presented
in Chapter 8 show that the approach is fairly robust and a wide range of auxiliary

percentages will yield reasonable sets of association rules.

Again, based on the example log, two sets of episodes can be identified with the
reference length method. An estimate for the auxiliary reference percentage can be
taken from the results of the page type method, which in this case leads to a y of 68%.
The cutoff value, ¢ is then calculated to be 35.2 seconds. Due to the small number
of entries in the example, the cutoff calculated by the reference length method is not

statistically valid, and varies significantly with the choice of v. A v of 0.6 gives a t
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of 28.3 seconds and a 7 of 0.75 gives a t of 42.9 seconds. As shown in Figures 5.12
and 5.13, the episodes are slightly different than the ones identified with the page
type method. However, these episodes are based on how the users are actually using

the site, as opposed to how the designers ezpect the site to be used.

5.2.4 Maximal Forward Reference Method

The maximal forward reference episode identification approach is based on the work
presented in [35]. Instead of time spent on a page, each episode is defined to be the
set of pages in the path from the first page in a user session up to the page before a
backward reference is made. A forward reference is defined to be a page not already
in the set of pages for the current episode. Similarly, a backward reference is defined
to be a page that is already contained in the set of pages for the current episode.
A new episode is started when the next forward reference is made. The underlying
model for this approach is that the maximal forward reference pages are the media
pages, and the pages leading up to each maximal forward reference are the auxiliary
pages. Like the reference length approach, two sets of episodes, namely auxiliary-
media or media-only, can be formed. The maximal forward reference approach has
an advantage over the reference length in that it does not require an input parameter
that is based on an assumption about the characteristics of a particular set of data.

The results of running the maximal forward reference method are also shown in
Figures 5.12 and 5.13. The resulting episodes are slightly different from both the
page type and reference length methods. The single episode for user 2 is the same in
all cases, but the episodes for the first and third users get divided up differently. As
will be shown in Chapter 8, as the connectivity of a Web site increases, the maximal
forward reference method tends to break down since a backward reference is less

likely.



Chapter 6
Pattern Discovery

Pattern discovery draws upon methods and algorithms developed from several fields
such as statistics, machine learning and pattern recognition. As discussed in Chap-
ter 2, a wide variety of pattern discovery techniques have been applied to Web usage
data. The first part of this chapter is an extension of Chapter 2, and gives a brief
overview of some of the more popular methods that have been used to discover pat-
terns for Web Usage Mining. In addition, the specific details for the frequent itemset

discovery, clustering, and classification algorithms used in this thesis are given.

6.1 Overview

Once the preprocessing tasks described in Chapters 4 and 5 have been performed,
the number of pattern discovery techniques that can be applied to the usage data is
almost unlimited. The methods range in complexity from relatively simple techniques
such as statistical analysis to more computationally expensive methods such as hidden
markov modeling. In practice, several techniques are usually applied to a set of usage

data in order to form a well rounded picture of how a Web site is being used.

6.1.1 Statistical Analysis

Statistical techniques are the most common method to extract knowledge about visi-

tors to a Web site [3, 5, 8, 10]. By analyzing the session file, one can perform different
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kinds of descriptive statistical analysis (frequency, mean, median, etc.) on variables
such as page views, viewing time and length of a navigation path. Many Web traffic
analysis tools produce a periodic report containing statistical information such as the
most frequently accessed pages, average view time of a page or average length of a
path through a site. This report may include limited low-level error analysis such as
detecting unauthorized entry points or finding the most common invalid URI. De-
spite lacking in the depth of its analysis, this type of knowledge can be potentially
useful for improving system performance, enhancing system security, facilitating site

modification, and providing support for marketing decisions.

6.1.2 Frequent Itemsets and Association Rules

Frequent Itemset discovery can be used to relate pages that are most often referenced

together in a single server session. Examples of frequent itemsets are as follows:

e The Home Page and Shopping Cart Page are accessed together in 20% of the
sessions.

e The Donkey Kong Video Game and Stainless Steel Flatware Set product pages
are accessed together in 1.2% of the sessions.

Any set of n frequent items can further broken into n separate association rules,
where a directionality is added to the rule. A frequent itemset of pages A and B leads
to two association rules of A = B and B = A. The first frequent itemset example listed

above now becomes:

e When the Shopping Cart Page is accessed in a session, the Home Page is also
accessed 95% of the time.

e When the Home Page is accessed in a session, the Shopping Cart Page is also
accessed 20% of the time.
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In the context of Web Usage Mining, frequent itemsets and association rules refer
to sets of pages that are accessed together with a support value exceeding some spec-
ified threshold. These pages may or may not be directly connected to one another via
hyperlinks. For example, rule discovery using the Apriori algorithm [20] may reveal a
correlation between users who visited a page containing electronic products to those
who access a page about sporting equipment. This is useful for identifying cross-
promotional opportunities. Aside from being applicable for business and marketing
applications, the presence or absence of such rules can help Web designers to restruc-
ture their Web site. The rules may also serve as a heuristic for prefetching documents

in order to reduce user-perceived latency when loading a page from a remote site.

6.1.3 Clustering

Clustering is a technique to group together a set of items having similar character-
istics [63, 77]. In the Web Usage domain, the two most common types of clusters
that are discovered are user clusters and page clusters. Clustering of users tends to

establish groups of users exhibiting similar browsing patterns, for example:

e Users in cluster “2” for a news site access articles related to sports and finance.

Such knowledge has been used to provide personalized Web content to the users,
or infer user demographics in order to perform market segmentation in E-commerce
applications!. On the other hand, clustering of pages can discover groups of pages

having related content:

e The Donkey Kong Video Game, Pokemon Video Game, and Video Game Caddy
product pages belong to the same usage cluster.

'In practice, demographic information is obtained directly from user registrations, or purchased
from a third party.
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This information is useful for search engines and Web assistance providers. In both
applications, permanent or dynamic HTML pages can be created that suggest related
hyperlinks to the user according to the user’s query or past history of information

needs.

6.1.4 Classification

Classification is the task of mapping a data item into one of several predefined
classes [51]. In the Web domain, one is often interested in developing a profile of users
belonging to a particular class or category. This requires extraction and selection of
features that best describe the properties of a given class or category. Classification
can be done by using supervised inductive learning algorithms such as decision tree
classifiers [89], naive Bayesian classifiers [73], k-nearest neighbor classifiers [52], or
Support Vector Machines [29, 107]. For example, classification of usage data coupled
with registration data may lead to the discovery of patterns such as:

e 30% of users who placed an online order from /Product/Music are in the 18-25
age group and live on the West Coast.

e The Donkey Kong Video Game, Pokemon Video Game, and Video Game Caddy
product pages are all part of the Video Games product group.

6.1.5 Sequential Patterns

The technique of sequential pattern discovery [70, 105] attempts to find inter-session
patterns such that the presence of a set of items is followed by another item in a
time-ordered set of sessions or episodes. For example:
e The Video Game Caddy page view is accessed after the Donkey Kong Video
Game page view 50% of the time.
By using this approach, Web marketers can predict future visit patterns which

will be helpful in placing advertisements aimed at certain user groups. Other types
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of temporal analysis that can be performed on sequential patterns includes trend
analysis [21] or change point detection [54]. Trend analysis can be used to detect
changes in the usage patterns of a site over time, and change point detection identifies
when specific changes take place. For example:

e Page views for the Donkey Kong Video Game have been decreasing over the
last two quarters.

e The Donkey Kong Video Game page views increased from January through
March, were steady until October, then began to drop.

6.1.6 Dependency Modeling

Dependency modeling is another useful pattern discovery task in Web Mining. The
goal here is to develop a model capable of representing significant dependencies among
the various variables in the Web domain. As an example, one may be interested to
build a model representing the different stages a visitor undergoes while shopping in
an online store based on the actions chosen (ie. from a casual visitor to a serious
potential buyer). There are several probabilistic learning techniques that can be
employed to model the browsing behavior of users. Such techniques include Hidden
Markov Models [26] and Bayesian Belief Networks [80]. Modeling of Web usage
patterns will not only provide a theoretical framework for analyzing the behavior of
users but is potentially useful for predicting future Web resource consumption. Such
information may help develop strategies to increase the sales of products offered by

the Web site or improve the navigational convenience of users.

6.2 Algorithms

The usage patterns that will be presented in Chapter 8, as well structure and content

preprocessing discussed in Chapter 4 make use of several pattern discovery algorithms.
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While the details of preparing text for clustering and classification were discussed
in Chapter 4, there are several options involving page views and page files when

preparing for pattern discovery.

For a multi-framed site, patterns can be discovered based on page views, the
individual page files, or the set of page files for a particular frame location. Page view
based patterns prevent the problem of discovering patterns that simply represent the
different components of the same page view. For example, the “Home Page” view
may be made up of two page files, HomeLeft .html and HomeBody.html. Performing
pattern discovery with page view identifiers such as “Home Page” prevents cluttering
the results with associations between HomeLeft.html and HomeBody.html. However,
in the case where a page file in one frame may be associated with several page files in
another frame, page view pattern discovery has two potential problems. Because the
occurrences of a page file may be spread across several page views, each page view
with the page file may not appear enough times to meet a minimum support criteria,
whereas the individual page file may have sufficient support. Second, patterns can be
discovered that only contain page views with the same page file. For example, consider
a product page file that can be viewed along with ten different left navigation page
files. This means that there are ten page views that differ only by the left navigation
frame. The product page may appear in 10% of the sessions, but when split among
the ten page views, may never appear in more than 1% of the sessions. Even if all
of the page views meet the minimum support, it is likely that a pattern relating all
ten of the page views will be discovered. This is not much better than discovering

patterns of page view components.

A third option is to perform pattern discovery on page files from a single frame,
such as the “main” or "body” frame. This prevents the discovery of page view

components in addition to preventing the dilution of a page file among multiple page
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views. The problem with patterns discovered for a single frame location comes during
the pattern analysis phase. When using a technique such as pattern filtering based
on site structure, patterns that do not contain all of the page view components can
be missing the links that tie the page files together. Consider a set of product pages
that are all listed on the same left navigation frame. Taken individually, none of the
product pages are linked to each other, but when the entire page views are considered,
they are all doubly linked. The results presented in Chapter 8 will show that when
filtering based on the site structure is performed, patterns based on all of the page
files should be discovered. When no filtering or content filtering is used, single frame
patterns provide the best results. For single frame sites, the page files and page views

are equivalent, preventing any of the problems discussed above.

6.2.1 Frequent Itemsets

All of the information contained in the server sessions or episodes is not necessary for
frequent itemset discovery. The order and number of occurrences of a page view or
page file in a session is not required. Therefore, sessions must be stripped down to
a list of unique session ID/page pairs. A minimum support cutoff must be identified
in order to limit the number of discovered patterns and the computation time. The
support of an itemset is the fraction of the total sessions that the set appears in
together. Support, S, is defined as follows for a set of n items, where D is the data

set and ¢ is an item:

count({iy,...,i,} € D)

5= count(D)

(6.1)

Once the frequent itemsets are discovered, interest can be used to objectively rank
the sets. Interest [31] is defined as the support of a frequent itemset divided by the

probability of all of the items appearing together in a set if the items are randomly
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and independently distributed:

I = M (6.2)

H?:1 S(ij)

An interest measure that is greater than one indicates that the items in the itemset
appear together more often than what would be expected through a random distribu-
tion. Items that have very high support will often appear in frequent itemsets simply
because they randomly appear together in sessions. However, these itemsets tend to
have a low interest measure. If the itemsets are broken out into association rules, the
confidence of each rule can be calculated. The confidence of a rule is the fraction of
sessions where the subsequent is present if the antecedent is also present. Typically,
association rules are limited to single item antecedents (otherwise, the number of
rules for an n item itemset can be much greater than n). Confidence is defined as

follows for a rule iy = {is1,...,0sm}:

S(iaaisla ce '7isn)

S (ia)

The support, confidence, and interest measures will be used for the generation of

C =

(6.3)

experimental results in Chapter 8.

6.2.2 Clustering

The clustering results obtained in Chapter 8 were obtained using hypergraph clus-
tering of frequent itemsets. The hypergraph clustering method of [55] takes a set
of association rules and declares the items in the rules to be vertices, and the rules
themselves to be hyperedges. Since association rules have a directionality associated
with each rule, the algorithm combines all rules with the same set of items, and uses

an average of the confidence of the individual rules as the weight for a hyperedge.
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Clusters can be quickly found by using a hypergraph partitioning algorithm such as
hMETIS [61].

The hypergraph clustering algorithm described in [55] was originally adapted in
several ways in the TopCAT (Top Clusters and Associations from Text) system [38]
to fit the unstructured text domain. However, the TopCAT modifications have been
incorporated into the WebSIFT system and have been used to successfully discover
clusters of Web pages and users. Because TopCAT discovers frequent itemsets instead
of association rules, the rules do not have any directionality and therefore do not need
to be combined prior to being used in a hypergraph. The interest of each itemset
used for the weight of each edge. Since interest tends to increase dramatically as the
number of items in a frequent itemset increases, the log of the interest is used in the
clustering algorithm to prevent the larger itemsets from completely dominating the
process.

It was found that the stopping criteria presented in [55] only works for domains
that form very highly connected hypergraphs. The [55] algorithm continues to recur-
sively partition a hypergraph until the weight of the edges cut compared to the weight
of the edges left in either partition falls below a set ratio (referred to as fitness). This
criteria has two fundamental problems:

e [t will never divide a loosely connected hypergraph into the appropriate number

of clusters. This is because it stops as soon as if finds a partition that meets
the fitness criteria.

e It can inappropriately partition a group of items that should be left together.
If the initial hypergraph is a group of items that logically belong to a single
cluster, the algorithm will go ahead and partition the items anyway.

In order to solve these problems, a user-defined cutoff parameter is used which
represents the maximum allowable cut-weight ratio (the weight of the cut edges di-

vided by the weight of the uncut edges in a given partition). The cut-weight ratio is
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defined as follows. Let P be a partition with a set of m edges e, and ¢ the set of n

edges cut in the previous split of the hypergraph:

]

Y weight(e;)

X weight(c;)

cw(P) (6.4)

A hyperedge remains in a partition if two or more vertices from the original edge
are in the partition. For example, a cut-weight ratio of 0.5 means that the weight of
the cut edges is half of the weight of the remaining edges. The algorithm assumes that
natural clusters will be highly connected by edges. Therefore, a low cut-weight ratio
indicates that hMETIS made what should be a natural split between the vertices in
the hypergraph. A high cut-weight ratio indicates that the hypergraph was a natural
cluster of items and should not have been split. Once the stopping criteria has been
reached, vertices can be “added back in” to clusters if they are contained in an edge
that “overlaps” to a significant degree with the vertices in the cluster. The minimum
amount of overlap required is defined by the user. This allows items to appear in
multiple clusters. Finally, the connectivity of each item in the cluster is checked.
Connectivity measures the strength of the item’s connection to the other items in the
cluster, and is defined as follows, where z is number of edges containing v, and y is

the total number of edges in the cluster:

¢ ght(e;
CTL(U) — Z;:l wezfq (6)
> j— weight(e;)

Items with a low connectivity are removed from the cluster. It should be noted

(6.5)

that like the clustering methods of [82], every item does not necessarily end up in a
cluster. Items that are not represented in a frequent itemset and items that do not
meet the connectivity requirement do not appear in any cluster. This usually results
in very “clean” clusters since items that are not particularly related to anything else

are not forced to appear in a cluster. However, if clusters of all of the items in a data
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set are desired, a different clustering method, such as k-means, should be used.

6.2.3 Classification

For classification problems with a high number of dimensions such as Web usage
data or text, Support Vector Machines can be used. The Support Vector Machine
(SVM) is a learning method introduced by Vapnik based on his statistical learning
theory [107] and Structural Risk Minimization principle. SVMs use the Vapnik-
Chervonenkis (VC) dimension of a problem to characterize its complexity, which can
be independent of the dimensionality of the problem. When using SVMs for clas-
sification, the basic idea is to find the optimal separating hyperplane between the
positive and negative examples. The optimal hyperplane is defined as the one giving
the maximum margin between the training examples that are closest to the hyper-
plane. The group of examples (vectors) that lie closest to the separating hyperplane
are referred to as support vectors. Once the separating hyperplane is found, new
examples can be classified simply by checking which side of the hyperplane they fall
on. A simple linearly separable example is shown in Figure 6.1, where there are only
two dimensions. The dotted lines represent the limits of linear planes that would
correctly classify the training examples. The bold line labeled with an “h” represents
the plane that provides the maximum separation between the two classes. The three
support vectors (shaded training examples) in the figure can be used to completely
define h. SVMs are referred to as universal learners, meaning that various types of
representations such as polynomials, radial basis functions, or neural networks can
be used.

The Support Vector Machine combines four concepts, as described in detail in [36]:

e Use of the Structural Risk Minimization (SRM) inductive principle.

e Mapping of input samples onto a high-dimensional space through the use of a
set of predefined nonlinear basis functions.
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Figure 6.1: Support Vector Machine Classification Example
e Use of linear functions with constraints on complexity to approximate the input
samples in the high-dimensional space.

e Use of the duality theory of optimization to make estimates of model parameters
in a high-dimensional feature space computationally tractable.

For classification, the optimal separating hyperplane, h is defined by the values
of x where the decision function D(x) is equal to zero. Given a set of training data

(x;,y;) from an input space x, the decision function is defined as:

n
D(x) =Y ajy:H(z;,x) (6.6)
i=1
The «}’s are the maximal solution to the following quadratic optimization prob-

lem:

n 1 n
Q(Oé) = ZCYZ' - 5 Z az-ajyiyjH(a:i, ZL‘j) (67)

i=1 ij=1
Subject to the constraints:

C
—i=1,... 6.8
n7Z ) 7n ( )

zn:yiai =0, 0<o; <
i—1
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where H is the inner product kernel and C' is the regularization parameter. For

polynomials of degree ¢, the inner product kernel is equal to:

H(z,z') = [(z-2") + 1] (6.9)

For radial basis functions of the form:

f(z) = sin(Z Q; exp{—u_aif”?}) (6.10)

where o is equal to width, the inner product kernel is equal to:

|z — 2'f?

H(z,z") = exp{— 1 (6.11)

o

Because of the separation of model complexity and dimensionality, it has been
shown [60, 40] that SVMs will perform well relative to other learning methods in
domains that have inherently high dimensionality. A more complete discussion of

SVMs can be found in [36].



Chapter 7
Pattern Analysis

The ultimate goal of any data mining effort is to provide the analyst with insight
into a particular domain. This insight can come from directly inspecting the entire
set of discovered patterns, or by performing another round of aggregation, filtering or
analysis on the discovered patterns. Pattern analysis is the step that is designed to
convert discovered rules, patterns, and statistics into knowledge or insight involving
the Web site being analyzed. The major difficulty in pattern analysis lies in the at-
tempt to precisely define the term knowledge. The transformation from information
to understanding is virtually impossible to quantify since a large component relies
on the human being (or group of humans) that is performing the analysis. A simple
query mechanism may suffice for a given data set and analyst, but under other cir-
cumstances, sophisticated visualization tools such as a starfield display [57] may be
required. Therefore, from a system design perspective, the pattern analysis phase of
any data mining task is really one of providing tools to facilitate the transformation

of information into knowledge.

Just about any tool or filter that can be applied to the output of data mining
algorithms can be classified as a pattern analysis tool. The most common tool is a
query mechanism, such as SQL for relational databases, that allows an analyst to
manually filter, sort, and combine various pieces of data to suit his or her needs.
On-line Analytical Processing (OLAP) tools take queries one step further by pre-

computing several levels of data aggregation in advance. This allows the analyst to

87
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roll-up and drill-down data in real-time. Visualization of results through multi-colored
graphs and charts is another popular way of providing pattern analysis capabilities.

With Web Usage Mining, as with many data mining domains, one of the biggest
challenges in pattern analysis is separating the interesting results from those that are
not particularly useful. Since pattern discovery algorithms are generally set up to
find the strongest or most common patterns in a particular data set, the most highly
ranked results are often the most obvious. As briefly mentioned in the Introduction
and Chapter 2, the concept of interestingness generally involves patterns that were
previously unknown to the analyst. In order to ensure that all patterns of potential
interest are discovered, the thresholds of many pattern discovery algorithms must be
set low enough such that hundreds or thousands of patterns are output. While the
number of items to analyze can been reduced by several orders of magnitude (a server
log for a large e-commerce site can contain millions of page views per day), a list of
several thousand patterns is only marginally more useful than the raw data. This is
especially true when the ranking of the results has no bearing on its interestingness.
The rest of this chapter focuses on methods and tools that can be used to identify

interesting patterns.

7.1 Measures of Interestingness

The goal of the analysis drives the choice of what interestingness measures will be
appropriate. A marketing analyst may want to examine the most popular patterns
to gain insight into what is driving sales on an e-commerce site. However, an analyst
trying to detect improper accesses to a Web site may be looking for certain types of
patterns, or patterns that don’t meet the criteria for “normal.” The objective mea-
sures are often tied to a particular type of pattern or even a specific algorithm, and

often highlight the patterns that are least interesting to an analyst. Support and
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confidence identify the rules that are the most common and have the highest correla-
tion strength. While these measures are critical for limiting the number of discovered
patterns, they do not necessarily help the analyst to identify unusual patterns. Be-
cause these objective measures can not take any domain knowledge into account, a
common problem with discovered patterns is that they simply corroborate the ob-
vious. In order to identify potentially interesting patterns for a particular domain,
a pattern-form independent, single pattern, subjective interestingness framework is
needed. The final dimension that must be specified for the interestingness frame-
work, according to [56], is the representation. In order to choose a representation,
the next section defines the properties that a framework for identifying subjective
interestingness should have in order to handle the types of data encountered in Web

Usage Mining.

7.1.1 Desirable Properties for an Interestingness Framework

In order to create a list of desirable properties for an interestingness measure, the
possible types of data (evidence) and the goals of the framework need to be defined.

There are two major types of evidence that need to be handled:

e Frequency data - The mined usage patterns.

e Subjective data - Encoding of structure or content, plus any additional analyst
beliefs.

The subjective evidence can be further broken down into probabilistic, fuzzy, and
qualitative categories. An example of probabilistic subjective evidence would be an
analysts belief that pages A and B will be used together 70% of the time. Beliefs about
the usage type of a page that has some navigational and media qualities naturally
maps to a fuzzy set definition, with a probability assigned to each potential usage

type. Finally, evidence from humans often comes in a qualitative format, such as “I
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believe pages A and B will be used together most of the time.” Given a set of default
beliefs derived from the structure, content, and domain experts, plus the evidence

from discovered patterns, the goals of the framework are to:

e Identify mined patterns that conflict with an existing belief.
e Identify mined patterns that reduce the level of ignorance about a belief.

e Identify changes in the evidence for a belief over time.

In addition, the framework should update the existing belief set based on the
new evidence when soft beliefs are involved. [101] divides beliefs into two categories
- hard and soft. A hard belief is a constraint that should not change, even with
the introduction of conflicting evidence. If the evidence conflicts with a hard belief,
then there must have been an error in the collection of the evidence. On the other
hand, a soft belief is one that an analyst is willing to revise in the face of new
and possibly conflicting evidence. The strength of a soft belief is referred to as the
degree of the belief. Therefore, in addition to a representation, an interestingness
framework must have a mechanism for updating the belief set in the face of new
evidence. The task of comparing and combining evidence from multiple sources has
been studied extensively under the heading of reasoning with uncertainty or evidential
reasoning. The research efforts can be very broadly classified into quantitative and
qualitative systems. Qualitative systems such as non-monotonic logics and Truth
Maintenance systems [49] can not easily handle the large amounts of frequency data
that is generated by data mining and will not be considered further. With the goals

and types of evidence listed above, a framework should have the following properties:

1. Rankable interestingness measure.
2. Update functions for incorporating new evidence.

3. Explicit measure of ignorance.
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4. Explicit evidence for and against a belief.
5. Ability to handle frequency based evidence.
6. Ability to handle subjective evidence.

7. Ability to handle fuzzy sets.

The choice of a representation greatly affects the choice of mechanism for ev-
idence comparison and aggregation, however, they are not completely dependent.
[101] briefly lists five different methods for handling degrees of soft beliefs with the
foundation and mechanism for each method treated as a single dimension. As with
any complex domain, the number of dimensions that can be used to classify the var-
ious quantitative uncertain reasoning systems is highly variable - Bonissone [27] uses
14, Quinlan [88] uses 4, and others, such as Shafer [98] and Pearl [80] tend to focus
on a single defining dimension. In addition, the dimensions used are not necessarily
orthogonal and the definitions are not always consistent from one author to the next.
Bonissone [27] divides his 14 dimensions into three layers for defining a framework
- a representation layer, inference(i.e. mechanism) layer, and control layer. Once a
representation is chosen, the control layer can choose the appropriate inference mech-
anism for the task at hand. This general architecture is very flexible, and will be
adopted for the Web Usage Mining interestingness framework, which will be referred
to as the information filter.

For quantitative systems, representations are generally either single-valued (e.g.
probability) or two-valued (e.g. belief pairs). Bayesian probability inference is by
far the overwhelming choice for single-valued representations. For two-valued repre-
sentations, either probability bounds or Dempster-Shafer [96] inference are the most
common. The choice of the inference mechanism affects how different pieces of ev-

idence are combined and aggregated, and how conflicts are resolved. In order to
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Figure 7.1: Bayesian Concepts

discuss the relative merits of the various representations and inference mechanisms,

a discussion of the basic properties of each is warranted.

7.1.2 Bayesian Inference

The main tenet of any Bayesian system is that a probability between the values of
zero and one can be assigned to any belief. By definition, the probability against a

belief, B, is equal to the probability not assigned in favor of the belief:
PB)=z, P(-B)=1—-z 0<z<l1 (7.1)

When new evidence, e is obtained about a belief, the probability is updated using

Bayes rule:

P(e|B)P(B)

P(Ble) = =505

(7.2)

The new probability is referred to as being conditioned by the evidence, e. In order
make use of Bayesian methods, both prior probabilities for all beliefs in addition to
the probability of the occurrence of a particular piece of evidence are required. When
nothing is known in advance about a particular belief, a default value such as 0.5 is

assigned. Figure 7.1 shows the concepts involved in Bayesian inference.
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7.1.3 Probability-Bound Inference

The idea of probability bounds is to allow for a range of probabilities to be considered
simultaneously. Often, the prior probability for a particular belief is not known, and
instead of picking a single value such as 0.5, a two-valued representation such as
probability bounds allows an explicit statement of ignorance. For a belief B, evidence

collected for or against B can be used to form the probability bounds, [l, u], where:

[ = lower bound on the probability of support for B (7.3)

u = upper bound on the probability of support for B (7.4)

The values of [ and © must satisfy the constraints:

I+ (1—u)<1, [>0, u>0 (7.5)

In this case, a lower and upper bound of 0 and 1 respectively would indicate that
the probability for a certain belief could be anywhere in the full range of possible
probabilities. There have been several methods proposed for combining different
sets of probability bounds obtained from different sets of evidence about the same
belief. Bonissone [27] defines five different triangular norms (T-norms) as follows for

combining two sets of evidence:

Ti(a,b) = max(0,a+b—1) (7.6)
A% £ 505 — 1)2 if (a0 4 p05) > 1
Tis(a,b) = ( ) ( )= (7.7)
0 otherwise
Ty(a,b) = ab (7.8)
Tos(a,b) = (at+b 1 —1)" (7.9)

T3(a,b) = min(a,b) (7.10)
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Figure 7.2: Probability-Bound Concepts

For two sets of evidence, [l1,u1] and [l3, us], the combined evidence is equal to the

following:

[T5(l, 12), Siur, us)] (7.11)

where S; is the conorm defined as:

Si(a,b)=1-T,(1—a,1—b) (7.12)

The different norms range from conservative combination techniques to liberal
combination techniques as ¢ increases from 1 to 3. In addition to Bonissone’s norms
and conorms, Baldwin has identified a few other combination techniques [25]. The
liberal T3 norm is equivalent to Zadeh’s intersection rule [111], and is also used by
Baldwin for combining groups of evidence from the same source prior to reasoning.

The basic concepts involved with probability-bound inference are shown in Figure 7.2.

7.1.4 Dempster-Shafer Inference

Dempster-Shafer (DS) methods also use a two-valued measure to describe the degree
of belief for or against a given statement.For a belief B, evidence collected for or

against B can be used to form an support pair, [s,, s,|, where:

S, = necessary support of B (7.13)



95

Support Degree of Support
for belief Ignorance against belief
N N N
| - | -
0 S, S, 1
Figure 7.3: Dempster-Shafer Concepts
s, = possible support of B (7.14)
(1 —s,) = necessary support of =B (7.15)
(1 —s,) = possible support of =B (7.16)
(sp —s,) = uncertainty of B (7.17)
The values of s,, and s, must satisfy the constraints:
sn+(1—s,) <1 (7.18)
$p > 0,5, >0 (7.19)

Figure 7.3 shows the concepts that map to each region of a belief scale, given s,
and s,. As an example, assume that evidence has been collected about the belief
B, that Web pages A and C are related. If all of the evidence is in support of B,
the DS pair is [1,1]. On the other extreme, if all of the evidence is against B, the
DS pair is [0,0]. If the data leads to a 25% degree of belief that B is true, and a
40% degree of belief that B is false, then [0.25,0.6] would represent the appropriate
DS pair. This says that the degree of uncertainty about B is 35%. Finally, if there
is no evidence pertaining to B, the DS pair is [0, 1], giving an uncertainty of 100%.
Independent of the type of the source for generating an DS pair, pairs can be combined
per Dempster’s rule of combination [96] to obtain a single DS pair per belief. The

basic rule is as follows:
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If B:[sin, S15] AND  B:[sa,, so,] are two independent DS pairs
from different sources about belief B, then conclude B:[s,, s,], where
k=1—=s1,(1—s9)— son(l — s1p) (7.20)
Sp = [S1nSon + S1n(S2p — Son) + Son(S1p — S10)]/k (7.21)
1—sp = [(1 = 51,) (1 = 59p) + (515 — 510) (1 = 59p) +

(s2p = s2m) (1 = s1p)]/k (7.22)

In order for the use of Dempster’s combination rule to be valid, the sources of
evidence must be independent of each other, as stated in equations above, and the
frame of discernment must be exclusive and exhaustive. The frame of discernment
refers to the domain of conclusions on which reasoning is taking place. In this case,
the frame of discernment is simply whether or not a particular belief is or is not true.
Therefore, the frame of discernment is both exclusive (The choices do not overlap),
and exhaustive (There are no other choices). The question of independent evidence
sources is not quite as clear cut. It could be argued that the usage of a site is depen-
dent on the structure to some degree (a user can not follow links that are not there).
However, the nature of this dependence is difficult to define quantitatively. Therefore,
similar to naive Bayesian methods [91], the evidence sources will be assumed to be

independent.

7.1.5 Statistical Inference

Statistical inference is the use of hypothesis testing with the mean and variance of
values in order to conclude if two sets of values are different. It is listed in [101] as
a possible choice for the mechanism for an interestingness framework. It is not used

for reasoning with uncertainty because subjective evidence rarely comes from enough
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sources to make the calculation of means and variances meaningful. In addition, when
the goal is to infer new facts in a knowledge base and propagate changes, an attempt to
carry along means and variances would create a very complex system. However, since
the goals of interestingness framework include identifying conflicting evidence and
changes in the discovered patterns, not to infer new facts, statistical inference should
not be automatically ruled out. A statistical inference framework would use a single-
value probability representation, the same as defined for Bayesian inference and shown
in Figure 7.1. Interestingness can be determined by defining a null hypothesis that the
existing value is equal to the new combined value, and checking for a violation of the
hypothesis. Sources of evidence are combined by standard averaging techniques, so
the existing and combined values are actually observed means, ji, with an associated

standard deviation, 6. The amount of change is defined as follows:

Hy : po = jte (7.23)

HA . Ho 7£ He (724)

. = 7“‘{’2_ “CL (7.25)
N, TN,

Where the o subscript denotes the original(existing) value and the ¢ subscript
denotes the combined value. N indicates the number of observations that contribute
to each observed mean. The determination of the appropriate N can be difficult.
Evidence based on discovered patterns is typically the result of aggregating hundreds
or thousands of sessions. However, subjective evidence is usually based on a single
source. As mentioned above, this is one reason statistical inference has not been

applied to general reasoning with uncertainty frameworks.
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7.1.6 Comparison of Inference Mechanisms

Given the properties listed in Section 7.1.1 and the discussion of the inference mech-
anisms above, the question is which of the four mechanisms makes the most sense
based the seven desired properties of the interestingness framework. Any of the
mechanisms fulfills requirements 1, 2, and 5 through 7, however, the Bayesian and
Statistical methods do not allow for an explicit measure of ignorance or explicit evi-
dence for and against a belief (since the probabilities for and against always have to
sum to 1, one type of evidence always defines the other). This leaves the two-valued
representations. A lot of controversy has surrounded the use of Dempster-Shafer in-
ference. However, as pointed out by Dempster [48], Shafer [97], and Pearl [80], this is
often due to the misinterpretation of DS pairs as probability-bounds. To illustrate the
differences in the inference mechanisms, take as an example two sets of evidence. e;
and ey, concerning a particular belief, B. Assume that the subjective quantification

of the evidence leads to initial DS pairs and probability bounds that are equivalent:

e — Bl : [06,08]

€y — BZ : [07,09]

The combined belief pairs that would be calculated using the various T-norms
are given in Figure 7.4. As shown, Tj, the most conservative norm, calculates a final
pair of complete ignorance given the slight conflict between the two sets of evidence.
This type of combination is appropriate for domains such as medical diagnosis, where
the consequences of an improper inference can be severe. For the determination of
interestingness, the more liberal 75 norm makes more sense. This leads to a belief
pair of B[0.6,0.9], meaning that the “true” probability of B occurring is somewhere

between 0.6 and 0.9. Even the 75 norm will always result in increasing or maintaining
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Figure 7.4: T-Norms for Combination Example

the degree of ignorance. This is somewhat counter-intuitive, since one would expect
the existence of more evidence in support of a belief to shrink the bounds around the
true value, similar to when the number of observations is increased when testing a

statistical hypothesis.

For DS inference, the use of equations 7.20 through 7.22 results in a belief pair
of B :[0.85,0.9]. Note that the DS pair is not implying that the probability of B
occurring is between 0.85 and 0.9. It is making a weaker ontological commitment
about the belief, and should be interpreted as the support for belief B being true
is 0.85, and support against belief B being true is 0.1. It does not mean that B is
expected to occur between 85% and 95% of the time. A breakdown of the calculations
for Dempster’s combination rule is shown in Figure 7.5. Note that each belief pair
contains three choices, support of B or e, against B or 1 —e,, and unknown (e, —ej,).
The new values are created by summing up the intersecting values for each choice
and normalizing them by the amount of conflict, k£ (equation 7.20). The amount
of conflict is essentially the sum of the intersections that lead to the null set. For

Dempster-Shafer, the final assignment of belief to the null set is required to be zero.

As shown in the example, the results of combining evidence with probability-
bounds inference is quite different than the results of DS inference. As more pieces
of evidence that agree with the first sets of evidence are collected about a particular
belief, the probability bounds will stay roughly the same. However, for multiple sets
of evidence in support of a belief, the combined belief pair will approach [1,1] for

DS inference (and conversely, multiple sets of evidence against a belief will result in
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0.7 0.1 0.2
€ 1n 0.6 0.42 0.06 0.12
l-eq 0.2 0.14 0.02 0.04
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k =1-(0.06 +0.14) = 0.8
e, =(0.42 +0.12 +0.14)/0.8 = 0.85
1-e,=(0.02 +0.04 +0.02)/0.8 = 0.1

Figure 7.5: Dempster-Shafer Combination Example

a belief pair that approaches [0,0]). Ultimately, the choice of inference mechanism
relies on the semantics and type of behavior that make the most sense for a particular
domain. As described in the next section, because it is difficult to predict even a range
of usage probabilities based on the structure and content of a Web site, the allowance
for weaker ontological commitments with the DS inference mechanism makes it the

logical choice for the information filter.

7.2 Information Filter

The information filter is broken into two major parts - an objective filter and a sub-
jective filter. The objective filter handles changes in the numeric measures that are
associated with the various pattern discovery methods and relates to the third goal
of the interestingness framework - identifying changes in the discovered patterns over
time. The subjective filter handles beliefs about the usage of pages in a Web site and

relates to all three goals of the interestingness framework.

7.2.1 Subjective Filter

For Web Usage Mining, the assumption is that content and structure data can be

used as surrogates for the Web site designer’s domain knowledge. Links between
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Table 7.1: Information Filter Examples

Mined Knowledge | Domain Knowledge | Interesting Belief Example
Source

General Usage Site Structure The head page is not the

Statistics most common entry point for users

General Usage Site Content A page that is designed to

Statistics provide content is being used as a
navigation page

Frequent Itemsets | Site Structure A set of pages is frequently accessed
together, but not directly linked

Usage Clusters Site Content A usage cluster contains
pages from multiple content categories

pages provide evidence in support of those pages being related. The stronger the
topological connection is between a set of pages, the higher the value of s, is set for
the evidence pair. Evidence pairs based on the site content can also be automatically
generated by looking at content similarity, and assigning values of s,, and s, based on
the calculated “distance” between pages. Table 7.1 gives some examples of the types
of interesting beliefs that can be identified in the Web Usage Mining domain using
the subjective filter.

Notice that domain knowledge in the examples is fairly fuzzy, and no specific
values are given for the beliefs. This is because while it is fairly easy to identify

”

beliefs such as, “pages A and B will be used together often,” it is much more difficult
to reliably estimate the exact parameters of a frequent itemset, cluster of pages, or
some other usage pattern in advance. Especially since the number and values of the
parameters vary greatly with the pattern discovery method. The Web site structure
and content will indicate which pages are likely to be used together (or not used

together), but not necessarily how often, or to what numerical certainty. This is why

the DS inference mechanism has been chosen for the subjective filter. The issue of
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estimating parameter values (or even deciding which of several available parameters
should be estimated at all) is avoided by attaching the weaker semantics to the belief
pairs. In addition, DS inference can handle both hard and soft beliefs in the same
framework. This is because a belief that is declared to be 100% true ([1,1]) or 100%

false ([0,0]) can not be changed by the introduction of new conflicting evidence.

Now that all four dimensions of the subjective filter have been defined, an actual
measure of interestingness is needed that meets the three goals of the framework.
Comparing the existing belief pair to the combined belief pair after the introduction
of new evidence fulfills the second and third goals. A reduction in ignorance or a
change in the degree of belief will be identified by changes in the evidence pair. A

formal definition of evidence pair change, § can be defined as follows':

5= \/(s;; — 52)2 + (59 — 56)2 (7.26)

In the definition above, the ¢ superscript designates a combined value and o des-
ignates an original value. This measure picks up changes in the belief, but not nec-
essarily conflict. Another criticism of Dempster’s combination rule has been that
the conflict between two sets of evidence is “ignored” since the final belief pair is
normalized by the amount of conflict. However, because the DS inference is only
being used to update belief pairs, not to infer new facts in a knowledge base, this
isn’t necessarily a problem. The amount of conflict between an existing belief and
a new set of evidence can be added to the amount of change in the belief pair to
get a measure of interestingness that meets all three of the goals set in Section 7.1.1.
The subjective interestingness, Z; of a belief after the introduction of new evidence

is defined as follows, where k is as defined in equation 7.20:

'While this definition uses the familiar L2-norm, other norms could be substituted as appropriate.



Table 7.2: Combination and Interestingness of Boundary Cases

# | New | Existing | Combined | 6 |1—Fk | Z;

1 |[0.1,0.1] | [0.9,0.9] [0.5,0.5] [0.82] 0.57 | 1.39
2 110.9,0.9] | [0.1,0.1] [0.5,0.5] [0.82] 0.57 | 1.39
3 11[0.1,0.1] | [0.1,0.9] [0.1,0.1] [0.10 | 0.80 | 0.90
4 110.9,0.9] | [0.1,0.9] (0.9,0.9] [0.10 | 0.80 | 0.90
5 | [0.1,0.1] | [0.1,0.1] || [0.01,0.01] | 0.17 | 0.13 | 0.30
6 |[0.9,0.9] | [0.9,0.9] || [0.99,0.99] | 0.17 | 0.13 | 0.30
7 110.1,0.9] | [0.1,0.9] || [0.17,0.83] | 0.02 | 0.10 | 0.12
8 | [0.1,0.9] | [0.1,0.1] || [0.1,0.1] | 0.1 | 0.00 | 0.10
9 |1[0.1,0.9] | [0.9,0.9] [0.9,0.9] | 0.1 | 0.00 |0.10

I, =6+ (1—k)
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(7.27)

In the simplest case, all evidence is either 100% for a belief, 100% against a belief,

or there is no evidence about a belief. However, as mentioned earlier, belief pairs of

[1,1] or [0,0] are special cases because they can not be revised by the introduction of

new evidence. While this is a desirable quality in the case of hard beliefs, it is not

a good idea for soft beliefs. Therefore, initial soft beliefs will bounded by [0.1,0.1]

and [0.9,0.9] to allow for revision in the face of new evidence (This does not prevent

combined values from exceeding the bounds, as shown in Table 7.2). There are nine

different “boundary” cases that can occur when combining evidence from domain and

usage sources for soft beliefs. These are shown in Table 7.2 along with amount of

subjective interestingness, Zs.

The first two boundary conditions are for fully conflicting evidence, which gives
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the highest measure of interestingness. The next two conditions are where there
is no existing knowledge about a belief (full ignorance) and the new evidence is
strongly positive or negative. Boundary conditions five and six show evidence that is
in complete agreement, and the last three conditions are where the new evidence has
nothing to say about the belief. Notice that both the change and conflict terms are
necessary to create an interestingness measure that meets the three goals and makes
intuitive sense. The change term (0) ends up ranking the conditions with evidence
in complete agreement (conditions 5 and 6) as more interesting than the conditions
where new strong evidence is replacing ignorance (conditions 3 and 4). However, use
of the conflict measure alone would rank the strong new evidence conditions over
the conditions of complete conflict (conditions 1 and 2). Another property of the
DS semantics and combination rule is that the evidence gets appropriately weighted.
As discussed, multiple sets of evidence in favor of a belief will result in a belief pair
approaching [1,1] (demonstrated in condition 6 of Table 7.2). The closer an existing
belief pair is to the upper or lower bounds, the less a single set of conflicting set of
evidence will change the combined pair. This prevents one anomalous set of evidence
from distorting the overall belief. If the anomalous evidence becomes the norm, the

belief pair will start to be pulled more and more towards the new “corrected” values.

7.2.2 Objective Filter

The objective filteris activated for subsequent sets of evidence pertaining to discovered
usage patterns. While the subjective filter picks up interesting additions, deletions,
and large scale changes to the discovered patterns, the objective filter is designed
to monitor changes in the actual parameters that are part of any pattern discovery
algorithm. For example, consider an association rule relating pages A and B with some

support, S and confidence, C'. Even if the association rule is regularly discovered each
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time the usage patterns are analyzed, significant changes to the support or confidence
should also be considered interesting. A measure like support may not factor into the
calculation of an evidence pair supporting the belief that pages A and C are related
through usage. However, a significant drop or increase in the support is certainly
of interest. Changes in the parameters associated with a pattern discovery method
are best tracked with statistical inference. Maintenance of a mean and variance for
each parameter is relatively easy and allows for testing of a null hypothesis that
the existing mean and the new value are equivalent. In [101] it is pointed out that
hypothesis testing can not handle the situation where it is expected that a value
is going to change, only the case where the expectation is for a constant mean.
However, if a change is expected by the analyst for some reason, this can always be
formulated as a subjective belief, and handled in the subjective filter instead. The
natural interestingness measure for the objective filter is the significance («) of the

hypothesis test defined in equations 7.23 through 7.25.

7.2.3 Thresholds

The information filter allows two thresholds to be set, one for each of the interesting-
ness measures. Discovered patterns that have either a subjective or objective inter-
estingness that exceeds one of the thresholds are flagged as potentially interesting.
Figure 7.6 shows the detailed architecture of the information filter. The representa-
tion layer contains both DS belief pairs and parameter values from the usage patterns.
The control layer very simply checks if the usage pattern has been previously seen,
in order to determine if the objective filter is appropriate. Finally, the inference layer
calculates the interestingness of the discovered patterns and performs the evidence
combination in order to use the updated belief pairs and parameter values for the

next set of evidence. The task of quantifying the various kinds of evidence into belief
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pairs will be discussed in the next section.

7.3 Evidence Quantification

In order to make use of the subjective information filter described in the previous
section, the different sources of evidence need to be transformed into belief pairs.
By the nature of subjective evidence, there is no one correct method for quantifying
the evidence. All of the quantification methods given in this section ultimately rely
on domain knowledge about the usage of Web sites. For belief pairs created by the
analyst that are not a direct result of structure or content evidence, the quantification
is whatever the analyst feels comfortable with. The task of converting fuzzy concepts,
such as unlikely or extremely likely, into numerical ratings has been used successfully
in a number of research efforts [28, 90]. However, the main goal of the information
filter is to use the existing data sources to automatically generate belief pairs in order
to provide standardized measures for similar situations and avoid the labor associated
with manual quantification. The remainder of this section defines methods that can
be used for quantifying evidence from usage, structure, or content data into beliefs

that various sets of pages will be related through usage.

7.3.1 Usage Evidence Quantification

The appropriate method for quantifying usage evidence is completely dependent on
the type of pattern discovered and the algorithm used for the discovery. As mentioned
previously, the number and types of parameters associated with pattern discovery
methods is vast. However, since the beliefs are in the form of what sets of pages will
be related through usage, any discovered usage pattern is a direct measure of the true

relation.
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Frequent Itemset Quantification

As described in Chapter 6, frequent itemsets are one of the simplest forms of patterns
that can be discovered. Therefore, the set of beliefs that evidence from frequent
itemsets is applicable to will also be simple, and will not include any restrictions on
the order or time of the page accesses. The beliefs for a set of pages, P = {vy, ..., v,}

and a set of sessions, S , will be of the form:

B'[s,, s,] where
sp = evidence for {S: v, € S} ={S: 1€ S}...={S:v, € S} (7.28)
1 —s,= evidence for {S:v, € S} #{S:v € S}... #{S:v, € S}

This type of belief will be referred to as a type I belief. The only parameter that
is regularly associated with frequent itemsets is the support of the itemset. However,
association rules, which take frequent itemsets one step further by assigning a con-
ditional direction to the itemsets, also have a measure of confidence. The confidence
of an association rule naturally maps to a degree of belief that a set of pages are
related through usage. Given an n item frequent itemset, n different association rules
can be generated, all with potentially different levels of confidence. To create a single
evidence pair for a frequent itemset, the maximum confidence from the corresponding

set of association rules can be used:

B’i[sna Sp] = [Cmaxa Cmax] (729)

where Cpq. is taken from the set of confidence levels, {C},...,C,}, associated
with an n item frequent itemset. While an evidence pair can be generated for each
individual association rule, this causes a number of practical problems, the largest

being the combinatorial explosion of the number of rules. The second problem has to
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do with very frequently occurring pages. Users do not generally browse an entire Web
site. In fact, the mean number of pages requested during a visit is around ten [86].
Therefore, the confidence for any association rule with a popular page view as the
antecedent is expected to be low. This does not necessarily mean that the pages are
unrelated, just that each visitor is not viewing every page on the site. However, low
confidence association rules for pages that are expected to be related will get labeled
as interesting. A low confidence cutoff could be used during pattern discovery to limit
the discovered rules to those with high confidence, but this will lead to rules having
unexpectedly low confidence from being excluded as well. The use of the maximum
confidence for a set of association rules with the same pages, i.e. the frequent itemsets,
somewhat mitigates the affect of user attrition on the usage evidence. Also, sets with
unexpectedly low confidence will remain in the evidence set and given a high degree

of subjective interestingness along with the rules with unexpectedly high confidence.

Usage Cluster Quantification

Unlike frequent itemsets, usage clusters do not necessarily represent actions that
occur within single sessions. A set of pages from a usage cluster may not appear in
any one session. Also, the available parameters for creating evidence pairs depends
on the algorithm used to create the clusters. There are no universal parameters like
support and confidence to help construct an evidence pair. Figure 7.7 shows the
four different cases that can be encountered. The first two cases are where the usage
cluster is either equal to or a subset of the domain grouping?. The third case is when
a single usage cluster spans multiple domain sets, and the fourth case is the opposite,

where a single domain set spans multiple usage clusters. All of the cases except the

2The domain page grouping can be created by clustering or classifying pages based on the content
or structure. The pages could also be manually grouped by a domain expert.
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Usage Cluster 1

3 4

Domain Group 1 Domain Group 2

Domain:Group 1

Figure 7.7: Domain vs. Usage Clusters

first could be considered interesting. Case two is somewhat interesting for what the
usage cluster does not contain. Case three is interesting because multiple domain
clusters are related through usage, and case four shows a case where there is a finer

granularity to the page classification than indicated by the domain evidence.

The beliefs that relate usage cluster evidence are that pages related by content
or structure will be represented by a single usage cluster. If a usage cluster maps to
several sets of pages related by content/structure, or several usage clusters map to the
same content /structure cluster or category, this would be unexpected and therefore
interesting. These beliefs, referred to as type 2 beliefs, will be of the following form

for a set of usage clusters, &4/ and domain sets D:



111

B?[s,, s,] where

s, = evidence for {U; D;} =
0 forij (7.30)
D] fOI' 7, - ]

1 — s, = evidence for {U; (" D;} #
0 fori#j

Notice that the type 2 beliefs are fundamentally different from the type 1 beliefs
in that the support values are based on evidence from more than one source. For the
type 1 beliefs, the support values are based on usage evidence (or as will be seen in the
next section, structure evidence) alone. Here, it is the intersection of usage evidence
and domain evidence that dictates the support values. Therefore, the quantification
of evidence from usage clusters will be tied to the domain evidence that is being used
for comparison. Section 7.3.3 will present a specific method for comparing usage

clusters with a content hierarchy.

7.3.2 Structure Evidence Quantification

There are two kinds of structure that must be handled for a general Web site - intra
page-view structure and inter page-view structure. As discussed in Chapter 3, it may
be desirable to discover patterns based on the individual page files, and then filter out
the patterns that represent nothing but a single page view. This can be accomplished
within the information filter framework by assigning a hard belief pair of [1,1] to any
set of page files that make up a single page view.

The inter page-view structure is equivalent to a directed graph. A natural measure
of the degree of belief that a set of pages will be used together is the connectivity
(or lack of connectivity) of a set of page views. A directed graph is defined by a
set of nodes, V', and a set of directed edges, F, represented by ordered pairs (u,v),

where u is the source and v is the destination of the edge. A directed graph is weakly
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connected if every pair of nodes is joined by a semipath. A semipath is defined as a
series of edges that lead from the first node to the second node, ignoring the direction
of the edges in the path. A directed graph is connected if there is a directed path from
at least one to the other of every pair of nodes. Finally, a directed graph is strongly
connected if every two nodes are mutually reachable through a directed path.

The edge-connectivity of a graph, K is defined as the minimum number of edges
that must be removed in order to result in a disconnected graph. In this case, the
definition of weakly connected will be used, so the maximum connectivity of a set of
n nodes is 2(n — 1), and the minimum connectivity is 0 (disconnected). The higher
the connectivity, the greater the degree of belief that the pages will related through
usage. On the other hand, the degree of belief against a set of pages being related
can be defined by the disconnectivity of a graph. For a set of n nodes, the minimum
number of edges that must be present to have a weakly connected graph is (n — 1).
Therefore, the disconnectivity, K', is bounded by (n— 1) (no edges at all), and 0 (the
graph is connected). All of the definitions just listed can be derived from Menger’s
theorem [72], which roughly states that the minimum number of nodes separating
two nonadjacent nodes s and t equals the maximum number of disjoint s-t¢ paths.
In order to meet the restrictions of equations 7.18 and 7.19, the connectivity and
disconnectivity of a set of nodes must be normalized by their maximum possible

values. This gives and evidence pair for a set of page views as follows:

K K
1 — —
Bs[snasp] - [,Cmax,]_ ,Cl

max

] (7.31)

This results in a fully strongly connected set of nodes being assigned an evidence
pair of [1,1] and a fully disconnected set of nodes being assigned an evidence pair
of [0, 0] (which would replaced by [0.9,0.9] and [0.1, 0.1] respectively, as described in

Section 7.2). Figure 7.8 shows the structure evidence pairs that would be calculated
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for a number of simple cases and Figure 7.9 shows a few examples of the subjective
interestingness that would be calculated when comparing frequent itemsets with site

structure.

7.3.3 Content Evidence Quantification

Content evidence can come from clustering, categorization, or a manually defined
hierarchy. Content information is best used as evidence for the type 2 beliefs, that sets
of pages will have equivalent usage and domain clusters. The following quantification
method can be used for a content hierarchy, which is very common for e-commerce
Web sites. It is assumed that the hierarchy is a tree, with the root node containing
the entire site. The tree does not have to be balanced, and a given leaf (e.g. product)
can have more than one parent (e.g. category). For any group of pages from the
content hierarchy, there exists a local root that is an ancestor for all of the pages in
the group. Assuming that the leaf nodes are labeled as level 0, and the site root
node is level n, the minimum local root is defined as the local root with the minimum

height for a set of pages, P and the set of local roots, r:

hrpin, = min(height(ry), . .., height(ry,)), (7.32)

where, Yv = r; € ancestor(v)

If hr,in = 1, for a set of pages, then the pages are all members of the same low-level
content category. As hrp, increases, the pages in the set represent more different
categories. The reciprocal of hr,,;, is a natural quantification for content evidence
supporting a type 2 belief. Because the tree is not required to be balanced, the
height of the minimum local root may vary for different pages in the set. Therefore,
the reciprocal of the average height of the local root, normalized to range between

zero and one, will be used for evidence in support of type 2 beliefs.
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Figure 7.8: Sample Evidence Pairs for Simple Graphs
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(Max Confidence)

10% 50% 90%

O Q 0.30 050 | 1.39
©_>© 1.27 059 | 0.58

OHQ 1.39 0.50 0.30

Structure
Evidence

Figure 7.9: Structure vs. Usage Subjective Interestingness

A high local root can be considered as evidence against a set of pages being
represented by a single usage cluster. In the extreme, if the Web site root is the
minimum local root for a set of pages, this is the strongest evidence against that set
of pages belonging to the same usage cluster. The maximum height of the tree has a
large effect on the strength of the evidence. A distance of two between the site root
and local root is not particularly strong negative evidence if the maximum height of
the tree is three, but very strong if the maximum height is twenty. Therefore, the
evidence against a set of pages being represented by a single cluster will be taken as
the distance to the site root divided by the maximum tree height. This results in an

evidence pair as follows:

1 1
avg(hrmin o hmaz (hmam - avg(hrmaw))
BZ[sn, 5] = | g(l nin) , - ] (7.33)

h’VTL(lJ)
The evidence pair defined above handles cases one and three from Figure 7.7, but
not cases two and four. Both cases two and four will result in an evidence pair of
[1,1] from equation 7.33 because the usage clusters are subsets of a single content

category. The fourth case can be handled with the reciprocal of the number of distinct
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sets with the same local root, which will be referred to as the multi-set factor. In
an extreme case, there could be a usage cluster associated with each individual item
in a content category. This means the multi-set factor can range from the reciprocal
of the maximum number of items to one. The factor can be normalized to range
from zero to 1, similar to the method used in equation 7.33. However, when the
minimum local root is high in the content tree, it is not particularly unusual to find
more than one cluster with the same local root. Therefore, the multi-set factor will
only be applied when hr,,;,, = 1. The subset case from Figure 7.7 is difficult to
handle in an automated manner. While a cluster that contains all but one item of
a content category could be considered interesting, the subjective interestingness of
a cluster containing half of the items, or two items from a category is not quite as
clear. In practice, especially with clustering methods that do not necessarily place
all of the items into clusters, it is very common to have clusters that are subsets
of content categories. Therefore, a subset factor will not be incorporated into the
content evidence pair.

Figure 7.10 shows an example content hierarchy, usage clusters, and the content
and combined belief pairs that would be calculated as a result. The usage clusters are
simply assigned an evidence pair of [0.9,0.9]. While this doesn’t take into account
the strength of the cluster, it is parameter independent. The highest subjective
interestingness is assigned to the cluster that spans multiple categories, {E, F,G}.
Next, the clusters that have the same local root, {A, B} and {C, D}, are ranked as
slightly less interesting. Finally, clusters {H, J} and {K, L} are ranked the lowest in

terms of subjective interestingness.



Page Set A.B CD E.F.G H,J K,L
hr i 1 1 2 1 1
Nax 2 2 3 3 3

max pages 4 4 5 3 2

set count 2 2 1 1 1

multi-set factor 0.50 0.50 1.00 1.00 1.00
Sin 0.50 0.50 0.25 0.90 0.90

S1p 0.50 0.50 0.50 0.90 0.90

s2n 0.90 0.90 0.90 0.90 0.90

2p 0.90 0.90 0.90 0.90 0.90

Sh 0.90 0.90 0.86 0.99 0.99

Sy 0.90 0.90 0.86 0.99 0.99

lsubj 1.07 1.07 1.18 0.30 0.30

Figure 7.10

: Content Hierarchy Example
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Chapter 8
Preprocessing Experiments

In order to properly test the information filter discussed in Chapter 7, the raw click-
stream data collected from server logs must be cleaned and preprocessed into server
sessions. This chapter discusses the results from several experiments run to test the
effectiveness of the preprocessing heuristics and episode identification methods de-
scribed in Chapter 5. The results from experiments conducted to test the information

filter will be presented in the next chapter.

8.1 Data Sets

Data from several Web sites has been collected. The size and dates of the server logs
for each data set are shown in Table 8.1. The Global Reach site hosts Web sites for
several small businesses. The log for the Global Reach site, www.global-reach.com, is
from 1997 and prior to large-scale e-commerce on the Web. No products were being
sold directly through the Global Reach sites at the time. The Global Reach data set
consists only of the Web server log, without any additional information about the
structure or content of the site.

The Computer Science Department site is designed to provide information about
people, research projects, facilities and classes. The dataset includes the content (e.g.
text) and structure for the site. The frame structure for the Computer Science site

is highly variable and was not taken into account during the preprocessing.
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Table 8.1: Data Used for Evaluation

Site Name Dates Sessions | Page File | Page View Site
Requests | Requests | Structure

Global Reach 3/97 9718 51,697, - No
Computer 2/10/99 to | 10,609 43,158 - Yes
Science Dept. || 2/17/99

Small 9/99 to 7079 63,623 63,623 No
E-commerce 11/1999

Large 12/16/99 46,405 663,844 463,450 Yes
E-commerce

Large 12/19/99 50,581 608,823 405,006 Yes
E-commerce

The Small and Large E-commerce sites both sell products directly through the
Web. The Small E-commerce site sells a small set of closely related products, and the
Large E-commerce site is a general retailer for a variety of merchandise. The Small
E-commerce site is a single framed site, which means the page files and page views
are equivalent. The Large E-commerce site has three frames for every page view - a
left navigation frame, top navigation frame, and a body frame. The majority of the
experiments reported on in this chapter and the next will be carried out on the data

from the Large E-commerce site.

A simplified map of the Large E-commerce site is shown in Figure 8.1. The map
is not complete, but shows the core set of pages and links that are used most often.
The page files outlined in bold are the key pages in the site related to the display
and sale of products. There are two main entry points, one for members and one
for anonymous users. The site includes 571 different categories and 5757 different

products leading to between 40,000 and 50,000 distinct page views each day.
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8.2 Session Identification

The test hypothesis for the session identification heuristic described in Chapter 5
is that sessions identified with the heuristic will be identical to sessions identified
through a positive identification method such as cookies or embedded session IDs.
For the data sets where only the IP address and agent are available for identifying
sessions, there is no practical method for testing this hypothesis. However, for logs

with an embedded session ID, a direct comparison can be made.

Methods

The input for these experiments was output of the data cleaning task for usage pre-
processing. The schema for the input and output for these experiments is shown in
Figure 8.2. For both the Large and Small E-commerce logs, a clean_log table was
created by parsing an ECLF log, removing all graphics requests, and removing all
log entries that did not contain an embedded session ID. This included removing a
number of hidden POST requests, since the embedded session ID was not recorded
in the Server log. Each distinct URI for both the request and referrer fields was
given a numeric alias. The CGI values that contained the embedded session IDs were
not included when assigning numeric aliases. The session identification heuristic de-
scribed in Chapter 5 was implemented in Java and run by connecting to the database
tables through a JDBC connection. The accuracy of the heuristic was calculated by

comparing the sessionid column of the session_log table to the id_agent_id column.

Results

The results of running the experiment on the Small E-commerce log and one of the

Large E-commerce logs are shown in Table 8.2.



clean_log

sessionid
ip_address
agent

time
page_file
ref_page_file

Input Data

Figure 8.2: Schema for Session Identification Experiments

session_log

sessionid
ip_agent_id
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time
page_file
ref_page_file

Output Data
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Table 8.2: Comparison of IP/Agent Session Heuristic to Embedded Session IDs.

‘ Data Set H Large E-commerce 1 ‘ Small E-commerce ‘
Embedded Sessions 46,405 7,062
[P/Agent Sessions 47,705 6,406
Embedded Sessions 8,053 384
w/ Multiple IP/Agent
IP/Agent w/ Multiple 7164 1471
Embedded Sessions
Correct IP/Agent 26,977 2,796
Sessions
Percent Correct 58.13% 39.59%
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Discussion

As shown in Table 8.2, the performance of the heuristic for the e-commerce sites is
very poor. Even though the total number of sessions is fairly close, the competing
effects of rotating IP addresses and ISP proxy servers results in a low overall accuracy.
Another problem factoring into the error for the e-commerce sites is that the secure
and non-secure proxy servers for many ISPs have different IP addresses. In any case,
the test hypothesis is not confirmed. It is clear that for the state of the Web today,
the Chapter 5 session identification heuristic is not adequate. Unless a better session
identification heuristic is developed, a positive session identification method will be

required in order to get accurate results from Web Usage Mining.

8.3 Path Completion

The test hypothesis for the path completion heuristic described in Chapter 5 is that
the heuristic will identify all of the page references missing from a server log due to
client-side caching. An additional hypothesis is that dynamic sites are not subject to

a significant amount of client-side caching.

8.3.1 Static Web Site

A small portion of the Computer Science Web site, the WebSIFT research project
pages, was used to test the hypothesis that the path completion heuristic will correctly
identify all of the page references missing from a server log. The WebSIFT project
pages are a set of completely static single frame Web pages with a fairly simple
inter-page structure. In most cases, there is only one possible path between a set of

pages.
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Methods

The WebSIFT project pages were instrumented with a Java applet that was written
to act as a client-side data collection mechanism, similar to the experiments described
in [99]. Each time one of the instrumented pages was requested by a client browser,
data about the request was sent back to a server side Java application for logging. The
Java applet was capable of detecting cached page references that occurred when the
forward or back buttons were used. The existence of the applet prevented repeated
requests for a page view through a hypertext link from being cached. The schema
for the client log, along with the schema for the server log input and output for
this experiment are shown in Figure 8.3. Minimal preprocessing was necessary to
create the client_log table since the format of the log could be controlled through the
Java application. Only URI normalization was performed to ensure that the page
view identifier strings would match the identifiers from the Web server log. The
server input for this experiment was the output of the session identification task for
usage preprocessing. The session_log table was created by parsing an ECLF log,
removing all graphics requests, and running the session identification heuristic. The
sessiton_log table was also filtered to remove all requests that did not contain the
string “cooley/websift,” since only the WebSIFT project pages were instrumented

with the Java applet.

The page view identification algorithm described in Chapter 5 was run on the
sesston_log table. However, since the page views were single framed and static, the
page view identification algorithm simply called the path completion heuristic when
the referring URI did not match the previous requested URI. A two second constant
was used as the access length for the inferred page views. The comparison of the

client_log and complete_log tables was performed manually.
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Figure 8.3: Schema for Static Path Completion Experiment

Results

Unfortunately, due to low amounts of traffic and the lack of robustness of the server-
side component for the Java applet, very little data was collected for analysis, 293 page
views over 24 sessions. The comparison showed that about 25% of the page references
for the WebSIFT project site were cached due to the use of the back button. The

path completion heuristic correctly identified 95% of the missing references.

Discussion

The path completion heuristic performed very well on the static site, confirming the
test hypothesis. The only cached page views that were missed occurred at the end of
a session, with no subsequent requests. However, because of the simplicity of the site

and the low volume of traffic, these results are not necessarily generalizable to other

Web sites.

8.3.2 Dynamic Web Site

Even though it was not possible to collect client-side data for comparison, the path
completion algorithm was also run on a portion of the data from the Large E-

commerce site.
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Methods

The input and output schema for this experiment are shown in Figure 8.4. The
req_uri, ref_uri, req_top, req_left, and req_body fields in the session_log and complete_log
tables are all numeric identifiers that correspond to an entry in the page_file table.
For the Large E-commerce site, the template_file, category, and product CGI values
serve as the identifier for the page file content. The session_log table was created by
parsing an ECLF log, removing all graphics requests, removing all log entries that
did not contain an embedded session ID, and setting the sessionid field equal to the
sessionid CGI value for the request. This included removing a number of hidden
POST requests, since the embedded session ID was not recorded in the Server log.
The template_file, category, and product CGI values for both the request and referrer

were replaced with the appropriate numeric identifier from the page_file table.

The page view identification algorithm described in Chapter 5 was run on the
session_log table. All of the page views for the Large E-commerce site have three
frames, so each page view identified had a top, left, and body page file. The path

completion heuristic was called from the page view identification algorithm when the
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Table 8.3: Path Completion for Large E-commerce Web Site.

Sessions 15,145
Logged Page Views | 41,059
Inferred Page Views 844
Total Page Views 41,903
Sessions with 429
> 1 inferred View

referring page file was not equal to one of the three page files from the previous page
view. The error handling routine for the page view identification algorithm simply
discarded sessions where a previous page view could not be found containing the

referring page file.

Results

The results of the experiment are summarized in Table 8.3. 15,145 of 30,000 sessions
were successfully processed by the heuristic. 2.8% of the sessions had at least one
detectable cached reference. The average number of cached references was roughly
two page views for the sessions that had at least one cached page view. 15 sessions

had greater than four cached page views.

Discussion

As shown, the amount of caching appears to be far less for the fully dynamic Web site
than the static portion of the Computer Science site tested in the previous section.
Because there was no client-side logging mechanism in place, there is no way to verify
the results. The high number of rejected sessions was mainly a result of removing
the hidden POST requests from the log during preprocessing. The hidden POST

requests often contain the referring page file for a subsequent request. Without access
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to the hidden POST data, there is no reasonable way to infer these missing page
references. For the sessions that were successfully completed, the results confirm the
test hypothesis, and indicate that cached page references can be ignored for fully

dynamic Web sites without having a large effect on the analysis results.

8.4 Episode Identification

The reference length method of episode identification presented in Chapter 5 relies on
the assumption that pages treated as media pages will have longer view times than
auxiliary pages. The first question that needs to be answered is how often this holds
true. The second question is that assuming media pages do have longer reference
times, how do the episodes identified with this method compare to episodes identified

by another method, such as maximal forward reference.

8.4.1 Page Usage Type

The test hypothesis for this experiment is that the average reference length for media
page views is longer than the average reference length for navigation page views.
Determining the intended usage type of a page view is a difficult problem in general
due to the fact that most page views are a combination of links, text, and graphics.
The most accurate method is to label the pages by hand, or apply specific knowledge
about a Web site. The Large E-commerce site is set up in such a way that the “actual”
page usage type is fairly easy to determine. The page files for the “body” frame are
almost exclusively media pages. Even though a list of links is always present in the
top and left frames, page views that are a result of a change in the body frame can
be declared to be media views. Similarly, page views that are the result in changes

to the left frame can be declared to be auxiliary views.
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Methods

The input for this experiment is the output of the page view identification task for
usage preprocessing, shown in Figure 8.4 as table complete_log. The data cleaning
and session identification tasks were performed by parsing an ECLF log, removing all
graphics requests, removing all log entries that did not contain an embedded session
ID, and setting the sessionid field equal to the sessionid CGI value for the request.
This included removing a number of hidden POST requests, since the embedded
session ID was not recorded in the Server log. The template_file, category, and product
CGI values for both the request and referrer were replaced with the appropriate
numeric identifier from the page_file table. The page view identification algorithm
described in Chapter 5 was run on the session_log table. All of the page views for
the Large E-commerce site have three frames, so each page view identified had a top,

left, and body page file. The path completion heuristic was not called.

Page views that were a result of a change to the req_body field were declared to be
media page views, and page views without a change to the req_body field were declared
to be auxiliary page views. The reference length for each page view was calculated as
the difference between the last file request time (Itime) and the view end time (etime).
The last page view for each session was not included in the calculations since there

was no end time for the page view.

Results

The average reference length for media page views for the Large E-commerce site was
83.4 seconds, and the average reference length for the auxiliary page views was 40.6
seconds. Figures 8.5 and 8.6 show the reference lengths for a typical media page view

and a typical navigation page view from the Large E-commerce site.
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Discussion

The average media page reference length was much longer than the auxiliary page
reference length, confirming the test hypothesis. In addition, the reference lengths
for the navigation page are heavily skewed towards short view times and the media
page view has a distribution with a higher percentage of long view times. However,
there are still a significant number of “short” reference lengths for the media page,
and “long” reference lengths for the navigation page. This means that the reference
length episode identification method will end up misclassifying a large number of
page views. However, as discussed in Chapter 5, the reference length method is
designed to identify the page views that are used as a media page, not the page views
that have been statically classified as a media page. Media pages with an unusually
short average reference length and navigation pages with an unusually long average

reference length may indicate a Web site design problem.

8.4.2 Synthetic Data

In order to compare the performance of the episode identification methods, a server
log with known patterns was needed. As was shown in Chapter 5, the three differ-
ent approaches result in different sets of episodes, even for a simple example. The
test hypothesis for this experiment is that the reference length episode identification
method will perform better than other episode identification methods for usage data
that has a heavy-tailed gamma distribution of reference lengths. Server logs with
generated data were created for the purpose of comparing the approaches. Besides
a known distribution, the advantage of using generated data for testing the episode
identification methods is that the actual percentage of auxiliary references and inter-
esting association rules are known in advance. The obvious disadvantage is that it is,

after all, only manufactured data and should not be used as the only tool to evaluate
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the episode identification methods.

Methods

The data generator takes a text file with a description of a Web site as a directed
tree or graph and some embedded association rules. The embedded association rules
become the “interesting” rules that are checked for during experiments with different
episode identification approaches. The interesting rules in this case are associations
that are not born out by the site structure, which would be identified by the site
filter. For each “user”, the next log entry is one of three choices, a forward reference,
backward reference, or exit. The probability of each choice is taken from the input file,
and a random number generator is used to make the decision. If the page reference
is going to be a media reference, the time is calculated using a normal distribution
and a mean value for the time spent on a page taken from the input file. The times
for auxiliary hits are calculated using a gamma distribution. Figure 8.7 shows a
histogram of the reference lengths for a generated data set, which is very similar to
the histogram of page file access times for the server log data shown in Fig. 5.14.
Three different types of Web sites were modeled for evaluation, a sparsely con-
nected graph, a densely connected graph, and a graph with a medium amount of
connectivity. The sparse graph had an average incoming order of one for the nodes.
The medium and dense graphs used the same nodes as the sparse graph, but had
more edges added for an average node degree of four and eight, respectively.
Episodes were identified using the reference length and maximal forward reference
episode identification methods discussed in Chapter 5. In addition, a “straw-man”
heuristic referred to as the time window method was used to identify episodes. The
time window episode identification method partitions a server session into time in-

tervals no larger than a specified parameter. The approach does not try to identify
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episodes based on media or auxiliary references, but instead assumes that meaning-
ful episodes have an overall average length associated with them. For a sufficiently
large specified time window, each episode will contain an entire server session. Since
the time window approach is not based on the media/auxiliary page model, it is not
possible to create two separate sets of episodes. The last reference of each episode
does not correspond to a media reference, the way it does for the auxiliary-media
episodes of the reference length and maximal forward reference methods. The usage
type method from Chapter 5 was not included in these tests since it is guaranteed to
be correct given the method of test data generation. Finally, the Apriori algorithm

was run on each set of episodes to discover association rules.
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Table 8.4: Number Discovered/Total Possible Interesting Rules.

‘ Approach ‘ Parameter H Sparse ‘ Medium ‘ Dense ‘

Time 0 min. | 0/4 | 0/3 | 0/3
Window 20 min. 2/4 2/3 1/3
30min. | 2/4 | 2/3 | 2/3

Reference 50% 4/4 3/3 3/3
Length 65% 171 | 3/3 | 3/3
80% 177 | 3/3 | 3/3

M. F. R. 1/1 /3 | 1/3

Table 8.5: Ratio of Reported Confidence to Actual Confidence

‘ Approach ‘ Parameter H Sparse ‘ Medium ‘ Dense ‘

Time 10 min. null null null
Window 20 min. 0.82 0.87 0.87
30 min. 0.98 0.90 0.88

Reference 50% 0.99 0.95 0.96
Length 65% 1.0 0.99 0.96

80% 0.97 0.99 0.96
M. F. R. 0.79 0.47 0.44

Results

Table 8.4 shows the number of rules discovered for each combination of episode iden-
tification method and Web site density. Table 8.5 shows the average ratio of reported

confidence to actual confidence for the interesting rules discovered.

Discussion

As shown, the reference length approach performed the best, even though it uses a
pure exponential distribution to estimate the cutoff time, while the synthetic data

was created with a combination of normal and gamma distributions. The maximal
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forward reference approach performed well for sparse data, but as the connectivity
of the graph increased, its performance degraded. This is because as more forward
paths become available, a media reference is less likely to be the “maximal forward
reference.” For dense graphs, auxiliary-media episodes would probably give better
results with the maximal forward reference approach. As expected, the performance
of the time window approach was relatively poor, but as the time window increased,

so did the performance.

The differences between the reference length and maximal forward reference ap-
proaches stand out in Table 8.5. The reported confidence of rules discovered by the
reference length approach were consistently close to the actual values. Note that
even though the synthetic data had an actual auxiliary page ratio of 70%, inputs
of 50% and 80% produced reasonable results. The reported confidence for the rules
discovered by the maximal forward reference approach was significantly lower than
the actual confidence, and similar to the results of Table 8.4, it degraded as the
connectivity of the graph increased. These results confirm the hypothesis that the
reference length episode identification method performs best for data with a heavy-

tailed gamma distribution.

8.4.3 Web Server Data

The test hypothesis for this experiment is that association rules discovered from
reference length episodes will contain subjectively interesting rules not found from
maximal forward reference association rules. In addition, the maximal forward ref-
erence association rules will not contain any subjectively interesting rules not found

with the reference length method.
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Methods

The input for this experiment was the output of the session identification task of
the usage preprocessing step. The session_log table was created by parsing a CLF
log, removing all graphics requests, and running the session identification heuristic.
The episode identification methods described in Chapter 5 were run on the session_log
table to create four versions of the episode_log table. Media-only and Auxiliary-Media
episodes were identified using the reference length and maximal forward reference
methods. An auxiliary percentage parameter of 65% was used for the reference length
method. The Apriori algorithm was then run on each of the episode_log tables with
thresholds of 0.1% support and 20% confidence. The discovered rules were manually

inspected for subjective interestingness.

Results

1150 association rules were discovered for the reference length episodes and 398 for the
maximal forward reference episodes. Table 8.6 shows some examples of the discovered

association rules.
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Table 8.6: Examples of Association Rules from Global Reach

| Approach Used | Conf.(%) | Supp.(%) | Association Rules

Reference Length 61.54 0.18 /mti/clinres.htm /mti/new.htm
(media-only) = /mti/prodinfo.htm
Reference Length 100.00 0.15 /mti/pubs.htm /mti/prodinfo.htm
(media-only) /mti/Q&A.htm = /mti/clinres.htm
Reference Length 26.09 0.14 /cyprus-online/dailynews.htm
(media-only) = /mti/Q&A.htm
Maximal Forward 52.17 0.14 /cyprus-online/Magazines.htm
Reference /cyprus-online/Radio.htm =
(media-only) /cyprus-online/News.htm
Maximal Forward 73.50 1.32 /mti/clinres.htm /mti/new.htm
Reference = /mti/prodinfo.htm
(aux-media)

Discussion

The first two rules shown in Table 8.6 are straight-forward association rules that
could have been predicted by looking at the structure of the web site. However,
the third rule shows an unexpected association between a page of the cyprus-online
site and a page from the MTI site. Approximately one fourth of the users visiting
/cyprus-online/dailynews.htm also chose to visit /mti/Q&A.htm during the same
session. However, since the cyprus-online page no longer exists on the Global Reach
server, it is not clear if the association is the result of an advertisement, a link to
the MTTI site, or some other factor. The fourth rule listed in Table 8.6 is one of
the 150 rules that the maximal forward reference approach discovered that was not
discovered by the reference length approach. While the reference length approach
discovered many rules involving the MTI web site, the maximal forward reference
approach discovered relatively few rules involving the MTI site. An inspection of the

MTI site revealed that the site is a fully connected graph. Consistent with the results
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of the previous experiment, the maximal forward reference approach does not perform
well under these conditions. The association rule algorithm was run with auxiliary-
media episodes created from the maximal forward reference approach to confirm the
theory that the rules missed by the media-only episodes would be discovered. The last
rule listed in Table 8.6 is the same as the first rule listed, and shows that the auxiliary-
media episodes from the maximal forward reference approach can discover rules in a
highly connected graph. However, at thresholds of 0.1% support and 20% confidence,

approximately 25,000 other rules were also discovered with this approach.



Chapter 9

Pattern Analysis Experiments

The predominant theme that has been repeated throughout this thesis is that the
majority of the patterns discovered through Web Usage Mining are uninteresting,
and that a method of identifying subjectively interesting patterns is needed. This
chapter first tests the statement that discovered patterns with the highest objective
parameters are often uninteresting. The information filter described in Chapter 7 is
then used to rank discovered patterns based on subjective interestingness. The Large
E-commerce and Computer Science data sets described in the previous chapter are

used for all of the experiments presented in this chapter.

9.1 Frequent Itemsets

The test hypothesis for this experiment is that use of page view identifiers or single
frames from a multi-framed site will result in fewer non-trivial discovered patterns
than the use of all of the page files, as discussed in Chapter 6. A non-trivial pattern
is one that contains items from more than one page view. A server log from the
Large E-commerce site is used for this experiment. In addition, the hypothesis that
itemsets with the highest objective measures are subjectively uninteresting will also

be tested.

139
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Methods

The input for this experiment, shown in Figure 9.1, is the output of the page view
identification task for usage preprocessing. The data cleaning and session identifica-
tion tasks were performed by parsing an ECLF log, removing all graphics requests,
removing all log entries that did not contain an embedded session ID, and setting
the sessionid field equal to the sessionid CGI value for the request. This included
removing a number of hidden POST requests, since the embedded session ID was
not recorded in the Server log. The template_file, category, and product CGI val-
ues for both the request and referrer were replaced with the appropriate numeric
identifier from the page_file table. The page view identification algorithm described
in Chapter 5 was then run on the session_log table. All of the page views for the
Large E-commerce site have three frames, so each page view identified has a top, left,
and body page file. The path completion heuristic was not called since the Apriori
algorithm does not require the time or number of occurrences of an item within a

session.

As discussed in Chapter 6, patterns can be based on the page view identifiers,
page files from a single frame, or page files from multiple frames. For page view

patterns, the clean_view data are the input to the pattern discovery algorithms. For
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Table 9.1: Large E-commerce Site Frequent [temsets.

Pattern Type || Total Number of | Number of Non-subset | Number of Distinct
Patterns Patterns Page Files

Page View 5691 110 69

Left Frame 442 49 35

Body Frame 1173 89 43

Both Frames 76,655 121 78

single and multi-frame patterns, the clean_view data are joined with the page_view
data in order to access the individual components of the page views. The final table,
page_file is used to translate the identifiers back into human understandable labels
once the patterns have been discovered.

A 1% support threshold was used to generate frequent itemsets for the Large E-
commerce site with the Apriori algorithm for the page views, left frame, body frame,
and both the left and body frame. The top frame was left out of the experiments
since there were only two distinct page files for the Large E-commerce top frame
location, and the values of the left and body frames uniquely determined the value

of the top frame.

Results

The number of discovered patterns for each input type is shown in Table 9.1. Since

any n item frequent itemset has ZZ;% ( ) frequent subsets, the number of sets that

nla
are not subsets of any other frequent itemset are also shown.

Tables 9.2, 9.3, 9.4, and 9.5 show the top ten discovered rules ordered by support
with an interest of at least one standard deviation above the average interest for all

discovered non-subset itemsets'.

ILess than ten rules are displayed for the cases where ten rules with sufficient interest were not



Table 9.2: Page View Frequent Itemsets.

‘ Page View H Support ‘ Interest ‘
Home Page, Sweepstakes Home 4.29 21.7
Sweepstakes Entry
Home Page, Main Domestics 2.27 19.6
Home Page, Main Jewelry 2.00 27.9
Home Page, Main Apparel 1.91 24.5
Home Page, Main Home Accents 1.90 22.3
Home Page, Main Home Accents, 1.39 22.4
Furniture
Home Page, Main Kids, 1.31 076.2
Video Games, Nintendo
Holiday Sweepstakes, 1.17 65.2
Holiday Sweepstakes Entry
Home Page, Main Sports 1.13 39.2
Order 1, Order 2, Order 3 1.10 3.23 x 10°
Order 4, Order 5

Table 9.3: Left Frame Frequent Itemsets.

‘ Left Frame H Support ‘ Interest
Main Categories, Home Accents, Furniture 1.75 21.1
Main Categories, Jewelry, Gold 1.20 26.3
Main Categories, Sporting Goods, Recreation 1.16 37.0
Main Categories, Apparel, Coats 1.09 23.0
Main Categories, Apparel, LeftOrderl, 1.05 250.6
LeftOrder2, LeftOrder3
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Table 9.4: Body Frame Frequent Itemsets.
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Body Frame H Support ‘ Interest
Main Body, Sweepstakes Entry, Sweepstakes Home 4.48 20.6
Main Body, Catalog Order, Orderl 2.21 62591
Order2, Order3, Order4, Orderb
Main Body, Domestics Body, Home Accents Body 1.93 7.6
Main Body, Holiday Sweepstakes, 1.76 43.2
Holiday Sweepstakes Entry
Main Body, Domestics Body, Housewares Body 1.72 6.8
Main Body, Home Accents Body, Housewares Body 1.64 7.3
Main Body, Shipping Chart, Orderl 1.37 561.8
Order2, Order3
Main Body, Shopping Cart, Orderl, Order2 1.34 94687
Order3, Order4, Orderb

Table 9.5: Both Frame Frequent Itemsets.

‘ Frame H Support ‘ Interest
Home Page, Holiday Sweepstakes, 1.75 43.5
Holiday Sweepstakes Entry
Home Page, Members Home, Member Signup, 1.74 284.8
Member Sign In, Order Status
Home Page, Kids Main, Video Games, Nintendo 1.66 5313.9
Home Page, Shopping Cart, Orderl, Order2 1.33 [ 1.9 x 10%
Order3, Order4, Orderb
Home Page, Main Electronics, Kids, 1.24 6719.3
Video Games, Video Games
Home Page, Main Jewelry, Gold 1.20 703.1
Home Page, Kids, Video Games, Handheld 1.18 5305.2
Home Page, Member Sign In, Member Sign Up 1.16 2795421
Orderl, Order2, Order3
Home Page, Sporting Goods, Recreation 1.16 1387.8
Home Page, Main Apparel, Coats 1.09 535.6
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Discussion

Manual inspection shows that none of the discovered rules are particularly interesting
from a subjective point of view. Most of the frequent itemsets confirm that the Home
Page and one of the high level categories are related through usage. The order stream
also appears in a few of the rules. The use of page view identifiers ends up “hiding” a
number of patterns due to the fragmentation of page files among several page views,
confirming the test hypothesis. Even though the number of non-subset patterns is
relatively similar for the page view and two frame itemsets, the two frame itemsets

contain more items on average.

9.2 Page File Frequent Itemsets versus Structure

The test hypothesis for these experiments is that Web site structure can be used rank
frequent itemsets based on subjective interestingness. Two preliminary experiments
were run on the static Computer Science data, and an experiment using the full

subjective information filter was run on the Large E-commerce data.

9.2.1 Unconnected Components in Frequent Itemsets

To test the feasibility of filtering discovered rules based on site structure, a sim-
ple test was run on frequent itemsets discovered from the Computer Science data.
The hypothesis is that frequent itemsets that represent unconnected components are

subjectively interesting.

present in the results.
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Methods

The input for this experiment was the output of the session identification task for us-
age preprocessing. Data cleaning and session identification were performed by parsing
an ECLF log, removing all graphics requests, and running the session identification
heuristic. The clean_view table shown in Figure 9.2 was then created by selecting
the distinct page files referenced in each session. Since the Computer Science site is

predominantly static, the URI served as the content identifier for each page file.

The Apriori algorithm was run to discover frequent itemsets with a support thresh-
old of 0.1%. Page view component identification was performed manually on the
discovered frequent itemsets. Any trivial frequent itemsets (itemsets that contain
nothing but components of the same page view) were removed. All frequent itemsets
that were a subset of a larger frequent itemset were also filtered out prior to checking
for the connectivity of the components. Each frequent itemset was declared to be
connected if the edge connectivity of the set of items was at least one, as defined
in Chapter 7. Any itemset with an edge connectivity of zero was declared to be

potentially interesting.
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Table 9.6: Unconnected Frequent Itemsets

| # | Mined Support(%) | Related Pages
1 0.10 /Research/, /tech_reports/
2 0.10 /employment/, /newsletter/
3 0.10 /faculty/, /newsletter/
4 0.10 /icra99/ICRA99-Index.htm, /icra99/Notice.html,
/icra99/TechnProgram.htm, /icra99/advprogram?2.htm
5 0.10 /new/, /sem-coll/
6 0.10 /reg-info/98-99 schedule.html, /reg-info/ss1-99.html,
/reg-info/ss2-99.html
7 0.11 /Research/Agassiz/, /faculty/
8 0.11 /icra99/Notice.html, /icra99/best.html
9 0.11 /icra99/Proceeding-Order.htm,
/icra99/Registration.htm
10 0.22 /grad-info/, /grad-info/97-98-grad-handbook.html
11 0.25 /grad-info/, /grad-info/96-97-grad-handbook.html
Results

693 frequent itemsets were discovered, with a maximum set size of six pages. There
were 178 unique pages represented in all of the rules. 11 frequent itemsets were

identified as potentially interesting, as shown in Table 9.6.

Discussion

Of the frequent itemsets shown in Table 9.6, the two including the graduate handbook
(numbers 10 and 11) are of note because these pages are out-of-date. A page with
the 1998-99 graduate handbook exists, and the links from the /grad-info/ page to
the older handbooks have been removed. However, since the pages were not actually
removed from the site and other pages in the site reference them (or users have old

bookmarks), the older handbooks are still accessed. The support of these itemsets
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are 0.25% and 0.22% respectively. Had the support threshold been set higher to limit

the total number of itemsets discovered, the rules would have been missed.

9.2.2 Connected Components without Frequent Itemsets

This experiment tests the hypothesis that connected components with high individual

support and no discovered frequent itemset are also subjectively interesting.

Methods

The input for this experiment was the output of the session identification task for us-
age preprocessing. Data cleaning and session identification were performed by parsing
an ECLF log, removing all graphics requests, and running the session identification
heuristic. The clean_view table shown in Figure 9.2 was then created by selecting
the distinct page files referenced in each session. Since the Computer Science site is
predominantly static, the URI served as the content identifier for each page file.
The Apriori algorithm was run to discover frequent itemsets with a support thresh-
old of 0.1%. Page view component identification was performed manually on the
discovered frequent itemsets. Any trivial frequent itemsets (itemsets that contain
nothing but components of the same page view) were removed. All of the connected
pairs of pages that had sufficient individual support were compared with the two-item
frequent itemsets. Pairs of pages that did not have a corresponding frequent itemset

were declared to be interesting.

Results

693 frequent itemsets were discovered, with a maximum set size of six pages. There
were 178 unique pages represented in all of the rules. 10 missing page pairs were

identified as potentially interesting, as shown in Table 9.7.
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Table 9.7: Connected Items without a Frequent Itemset

‘ # ‘ Web Pages

1 | /Research/Agassiz/agassiz_pubs.html, /Research/Agassiz/agassiz_people.html
/Research/ GIMME/tclprop.html, /Research/ GIMME /Nsync.html
/Research/airvl/minirob.html, /Research/airvl/loon.html
/Research/mmdbms/home.shtml, /Research/mmdbms/group.html
/newsletter /kumar.html, /newsletter/facop.html

/newsletter /letter.html, /newsletter/facop.html

/newsletter /letter.html, /newsletter/kumar.html

/newsletter /newfac.html, /newsletter/facop.html

/newsletter /newfac.html, /newsletter/kumar.html

/newsletter /newfac.htm, /newsletter/letter.html

OO0 || O | W| DN

—_
)

Discussion

In Table 9.7, the fourth pair of pages is of note because the first page functions solely
as an entry page to a particular research group’s pages. However, the link from
the first page is flashing and located fairly low on the page. This suggests a design
problem since not all of the visitors from the first page are visiting the second. These
results confirm the hypothesis that pages used together less than would be expected

from the site structure can be subjectively interesting.

9.2.3 Information Filter

The test hypothesis for this experiment is that frequent itemsets can be ranked accord-
ing to subjective interestingness using the information filter described in Chapter 7

and the structure of a Web site.
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Methods

The input for this experiment, shown in Figure 9.1, is the output of the page view
identification task for usage preprocessing. The data cleaning and session identifica-
tion tasks were performed by parsing an ECLF log, removing all graphics requests,
removing all log entries that did not contain an embedded session ID, and setting the
sessionid field equal to the sessionid CGI value for the request. This included removing
a number of hidden POST requests, since the embedded session ID was not recorded
in the Server log. The template_file, category, and product CGI values for both the
request and referrer were replaced with the appropriate numeric identifier from the
page_file table. The page view identification algorithm described in Chapter 5 was
then run on the session_log table. All of the page views for the Large E-commerce
site have three frames, so each page view identified had a top, left, and body page
file. The path completion heuristic was not called since the Apriori algorithm does

not require the time or number of occurrences of an item within a session.

A 0.5% support threshold was used to generate frequent itemsets with the Apriori
algorithm for both the left and body frame of the Large E-commerce site data. The
top frame was left out of the experiments since there were only two distinct page
files for the Large E-commerce top frame location, and the values of the left and
body frames uniquely determined the value of the top frame. The non-trivial, non-
subset itemsets were input into the subjective information filter and compared against
the structure of the Web site. The subjective interestingness of each pattern was
calculated as described in Chapter 7 using a Java program accessing the data through

a JDBC connection.
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Table 9.8: Frequent Itemsets with High Subjective Interestingness.

Page View Support | Maximum | Interest | Subjective
Confidence Interest
Home Page, 0.55 10.2 10 1.26

Main Holiday,
Holiday Sweepstakes

Home Page, 0.56 11.5 2 1.23
Main Holiday,

Sweepstakes

Home Page, 0.50 13.0 50 1.19

Main Housewares,
Main Holiday
Home Page, 0.51 9.35 21 1.18
Main Holiday,
Member Order Status
Home Page, 0.50 12.44 25484 1.14
Main Domestics,
Main Housewares,
Main Electronics

Results

155,951 frequent itemsets were discovered by the experiment, of which 209 were non-
trivial and non-subset itemsets. The five itemsets with the highest subjective inter-
estingness are shown in Table 9.8 and the five itemsets with the lowest subjective

interestingness are shown in Table 9.9.

Discussion

All but one of the frequent itemsets represented connected pages, resulting in most of
the patterns being assigned a low subjective interestingness measure. However, the

one unconnected frequent itemset was declared to be the least interesting of all the



Table 9.9: Frequent Itemsets with Low Subjective Interestingness.

Page View

Support

Maximum
Confidence

Interest

Subjective
Interest

Home Page,
Main Electronics,
Computers,
Peripherals

0.59

95.4

11281

0.58

Home Page,

Main Home Accents,
Wall Decor,

Misc.

0.56

96.8

100547

0.58

Home Page,
Main Kids,
Video Games,
Handheld

0.57

98.6

31025

0.58

Home Page,
Main Kids,
Video Games,
Nintendo

0.87

98.8

31102

0.58

Main Holiday,
Main Domestics,
Main Home Accents

0.50

13.0

41

0.32
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discovered patterns. This is because the maximum confidence for the itemset was
quite low, meaning that more often than not, the pages were not accessed together
as expected due to the lack of connectivity. The rules with the highest subjective
interestingness are all rules that have much lower confidence than would be expected
due to the connectivity of the pages. The first two rules indicate that there is not
very much cross-traffic between the sweepstakes pages and the Home Page. It turns
out that there is a direct site entry point into the sweepstakes pages. A possible
explanation for the low confidence is that users are coming to the site to register for the
sweepstakes, and then leaving without browsing the site. This could be confirmed by
performing sequential pattern analysis on the Home Page and sweepstakes pages. The
last three rules are also potentially interesting due to a lack of cross-traffic between
the page views. It is not immediately clear why this is the case for the third and
fourth patterns, but a possible explanation for the fifth pattern is that users that
browse Housewares and Domestics are not interested in Electronics (or vice-versa).
The first four itemsets in Table 9.9 are all levels of a single category hierarchy. The
last itemset is the one unconnected itemset already mentioned. Note that four of
the five subjectively interesting patterns have a very low objective interest measure,
and they all have low support and confidence. The Table 9.9 patterns have just the
opposite characteristics - the confidence and objective interest measures are quite

high.

9.3 Product Episode Clusters versus Content

The experiments in this section were designed to test the ability of the information
filter to rank clusters according to subjective interestingness based on the content of

a Web site.
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product_log cluster
sessionid cluster_id
product product
Input Data Output Data

Figure 9.3: Schema for Product Cluster Experiments

9.3.1 Hypergraph Product Clusters

The test hypothesis for this experiment is that product clusters discovered through
the hypergraph clustering method described in Chapter 6 can be ranked according

to subjective interestingness based on the content hierarchy of a Web site.

Methods

The input and output schema for this experiment are shown in Figure 9.3. Data
cleaning and session identification were performed by parsing an ECLF log, remov-
ing all graphics requests, removing all log entries that did not contain an embedded
session ID, and setting the sessionid field equal to the sessionid CGI value for the
request. This included removing a number of hidden POST requests, since the em-
bedded session ID was not recorded in the Server log. All product pages for the
Large E-commerce site are identified by a product code contained in the product CGI
variable for a URI. The product_log table was created by selecting the unique non-null
product values for each session ID.

The Apriori algorithm was run on the product_log table with a support threshold of
0.3% to discover frequent itemsets. The non-subset frequent itemsets were then input
into the Hypergraph clustering algorithm described in Chapter 6 to create product

clusters. A cutoff parameter of 0.5, connectivity parameter of 0.01 and an overlap
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1 Black Leather Blazer 9 Rose Stencil Comforters 13 Atrium Bedding
Belted L eather Jacket Diane Comforter Set/Accessories Tiffany Bed Sets
Hooded L eather Jacket Verona Comforter Set Josephine Bedding
Men's L eather Jacket Harper Bed Set Meridian Bedding
Surburban Leather Jacket Royalton Comforter Sets Brentwood Bed Set
Women's Barn Jacket Tribeca Bedroom Ensemble Splash Graphic Bedding Set
Leather Anorak Camille Comforters Rebecca Bed Set
Leather Bomber Jacket Romance Bedroom Set Shauna Bed Sets
3/4 Length L eather Coat Gold Dust Comforter Set Facets Bed Sets

2 Wall Accessory Set Angel Masterpiece Comforter Set Monte Carlo Bed Set
Wall Decor Renee Comforters Noblis Bed Set w/Accessories

Wall Decor 3-Pc. Set Mission Floral Comforter 14 Pokemon Video Games

3 Framed Hydrangea Print Matelass Coverlets GameBoy
4-Pc. Mirror Wall Group Cleopatra Comforter Set 15 ProTek Multimedia Computer
4-Pc. Handcrafted Wall Group Lucern Bedroom Ensemble ProTek 450 MHz Computer

2-Pc.Mirrortek Wall Decor

Catherine Comforter Set

eMachines 400M Hz Computer

Wall Decor Madrid Bedding Ensemble 16 Leopard-Print Chemise and Robe
Nature Print and Pair of Shelves Ellington Comforter/Sheet Sets 3-Pk. Flutter Gowns
3-Pc. Flora Print Set Chambord Comforter Set Jacquard Print Caftan

4 Toy Box Storage Bin Prelude Comforter Set 3-Pack of V-Neck Sleepshirts
Toy Bin Organizer Olivier Comforter Set 3-Pc. Teddy Set

5 Contemporary Ent. Center Carrington Comforter Set Crochet Tank Top and Panty Set

Spindle-Style Ent. Center
Entertainment Center/Bar

6 2-Pc. Side-Lace Suit
2-Pc. Tuxedo Suit
Cape Suit Wardrober
Shirt-Jacket Pant Suit

Roman Comforter Set
Grandeur Comforter Sets
Melissa Bedding Ensemble
Lexington Comforter Set
Christine Comforter Sets
Preston Bedding Ensemble

17

Corner Computer Desk A
Corner Computer Desk B

7 Burgundy Triov Painting
Mirrored Wall Murals

10 Emerald City Bed Set

Tristar Bed Set

8 Beautiful Pizzazz Bedding
Renee Comforters
Dream Angel Bedding Ensemble
Ellington Comforter/Sheet Sets
Lucern Bedroom Ensemble

11 5 Piece Bath Rug Set

5-Pc. Bath Set

18

Leaf Bedroom Furniture

Rustic Bedroom Furniture
Contemporary Bedroom Furniture
L afayette Bedroom Furniture
Bristol Bedroom Furniture

Black Steel Bedroom Furniture
Shaker-Style Bedroom Collection

12 Leather Suede Bootie

Womens High Shaft Boot

19

Mission-Style Bed
Monticello Sleigh Bed

Figure 9.4: Product Clusters from Hypergraph Partitioning

parameter of 0.6 were used for the Hypergraph clustering algorithm.

Results

With a minimum support threshold of 0.3%, 644 itemsets were discovered. 118 dis-
tinct products were represented in the frequent itemsets. The output of the Hyper-

graph clustering algorithm produced 19 clusters, as shown in Figure 9.4.
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Discussion

All of the 19 clusters listed in Figure 9.4 contain products from a single low level
category. There are no cross-category relationships identified by the frequent itemset
clusters. The information filter does rank clusters 2, 3, and 7 as the most interesting
because they are all products from the same low level category - Miscellaneous Wall
Decor. For some reason, there are three distinct subsets of users who view certain
products with in the Wall Decor category. Similarly, clusters 8 and 9 are listed as
slightly interesting since they are both from the Comforter category in Domestics.
The rest of the clusters match case 1 or 2 from Figure 7.7, where there is complete
agreement between the usage cluster and the content category.

The disadvantage of the Hypergraph clustering algorithm is that it limits the
discovered items and clusters to those that are frequently occurring and tightly con-
nected. While this produces very clean clusters that represent the behaviors of a
significant amount of the population (as defined by the minimum support criteria),
many products that are viewed do not end up in any cluster. The Apriori algo-
rithm depends on the minimum support threshold to prevent the computations from
becoming intractable. At 0.2% support, the Apriori algorithm was allowed to run
for 24 hours, and was unable to complete the frequent itemset generation process.
Due to the small number of discovered clusters, the use of Hypergraph clustering to
test the hypothesis that information filter can rank clusters according to subjective

interestingness is inconclusive.

9.3.2 Concept Clusters

In order to get clusters that include some less frequently occurring products, the
Concept Indexing method described in [62] was used on the product episodes. The

test hypothesis for this experiment is that product clusters discovered through the
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concept clustering method can be ranked according to subjective interestingness based

on the content hierarchy of a Web site.

Methods

The input and output schema for this experiment is shown in Figure 9.3. Data clean-
ing and session identification were performed by parsing an ECLF log, removing all
graphics requests, removing all log entries that did not contain an embedded session
ID, and setting the sessionid field equal to the sessionid CGI value for the request.
This included removing a number of hidden POST requests, since the embedded
session ID was not recorded in the Server log. All product pages for the Large E-
commerce site are identified by a product code contained in the product CGI variable
for a URI. The product_log table was created by selecting the unique non-null product
values for each session ID. The [62] concept clustering method was used to discover

product clusters from the product_log table.

Results

127 multi-product clusters were discovered containing 1228 unique products. 27 of the
127 clusters were equally ranked with the highest amount of interestingness. For all
27 clusters, the minimum local root was the global root for the entire site. Figure 9.5
shows five of these clusters. 55 clusters contained products from the same low level
category, and 21 clusters contained products from the same second-level category. In

most cases, the height of the content hierarchy was four.

Discussion

Most of the 27 interesting clusters are similar to the first cluster listed in Figure 9.5,

where a quick manual inspection is sufficient to notice the difference in the listed
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Product Category Product Category

1 10" Cuckoo Clock Clocks 3 Rechargeable Master Craft Drill Cordless
Diamond Hoop Earrings Ladies Jewelry Black Decker Cordless Drill Cordless
9-Pc. Rose Clock Set Clocks Black Decker Cordless Screwdriver Cordless
NBA Showtime Sega Black Decker Socket/Bit Set Cordless
Diamond Pendant Earrings Ladies Jewelry Black Decker Hand Power Tools Power Tools
GameBoy Colors Nintendo Deluxe Tire Changing Kit Accessories
N64, Resident Evil 2 Nintendo Master Craft 101-Pc. Tool Set Hand Tools
PlayStation; Jet Moto 3 Nintendo Master Craft Storage Chest Hand Tools
Super Nintendo w/Tetris Attack Nintendo Master Craft 119-Pc. Tool Set Hand Tools
Super Nintendo; Space Invaders Nintendo Master Craft 127-Pc. Tool Set Hand Tools

2 40-Pc. Kitchen Linen Set Kitchen Ensembles Highway Emergency Kit Accessories
5-Pc. Inflatable Bath Set Accessories NASCAR Fleece Shirt Active
Bathroom 3-Shelf Corner Caddy Accessories NASCAR Denim Shirt Active
Bathroom Spacesavers Scale Scales NASCAR Jersey Active
Bedding for Kids Children 4 Compact Metal Detector Misc
Camouflage Bedding Children Highway Emergency Kit Accessories
Country Kitchen Towel Sets Table Linens Metal Detector Misc
Dazey Turbospa Massagers Protek | Metal Detector Misc
Doral 4-Pc. Rug Set Accessories 5 12-Pc. Bath Towel Set Bath Sets
Flannel Sheet Sets Flannel Knits 20-Pc. All Cotton Bath Towels Bath Sets
Graphics Chenille Spreads Chenille 20-Pc. Printed Towel Set Bath Sets
Hearts Chenille Bedspreads Chenille 24 Piece Towel Set Bath Sets
Kenya Comfortspread Bedding Comfortspreads 24-Pc. Bath Towel Set Bath Sets
Chenille Bedroom Ensemble Chenille 26-Pc. All-Cotton Towels Bath Sets
Leaves Rugs Oriental 5-Pc. Bath Set Bath Rugs
Poppin' Fresh Kitchen Linen Sets Kitchen Ensembles 50-Pc. Bath/Kitchen Towels Bath Sets
Satin Comforter and Sheet Sets Satin 6-Pc. Bath Towel Set Bath Sets
Scroll Chenille Bedspread Chenille Robe/Towel Sets Bath Sets
St. Croix Comforter and Sheet Set Satin Solid Color Bath Towel Set Bath Sets
St. Croix Kitchen Textiles Kitchen Ensembles St. Croix Towel Sets Bath Sets
St. Croix Satin Bed Set Satin Bathroom Storage Accessories Bath

Figure 9.5: Interesting Product Clusters
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products. The most likely explanation for these clusters is holiday shoppers looking
for gifts for a number of different people. For the other four clusters listed in Fig-
ure 9.5, it is not immediately apparent why they have been ranked as interesting.
However, for each cluster, there is at least one product that is part of a completely
different high level category than the rest. For cluster 2, the “Dazey Turbospa” is
under Housewares and the rest of the products are under Domestics. In cluster 3, the
three pieces of “NASCAR” clothing are under Apparel and for cluster 4 the metal
detectors are listed under the Sporting Goods category. All of the other products
from clusters 3 and 4 are listed under Hardware. For cluster 5, the last product,
”Bathroom Storage Accessories” is listed under the Home Accents hierarchy, while
the other products are under Domestics. Because the site structure somewhat mirrors
the content hierarchy, in each of these cases, several links had to be followed to get
to the desired products in a different category. These interesting clusters indicate
an opportunity to increase cross-sells for the e-commerce site by directly linking the
products from different categories. The results of the concept clustering confirm that
the information filter can be used in conjunction with the content of a Web site to

rank clusters according to subjective interestingness.



Chapter 10

Conclusion

Web Usage Mining has become an important area of research, as evidenced by the
growing number of research projects and commercial enterprises engaged in analyzing
and performing pattern discovery on Web clicksteam data. Its full potential is just
starting to be tapped with static aggregation, OLAP, and simple pattern analysis.
The ability to observe potential customers as they browse through a virtual store
promises to raise business intelligence to a new level, and at the same time increases
concerns about consumer privacy. While demographic data can always be added into
the Web Usage Mining process, this thesis has shown that interesting results can be
generated with just the anonymous clickstream data. The discovered patterns do not
depend on any personal data about the site users, only their aggregated browsing

patterns.

For the task of identifying the subjectively interesting patterns from the total set
of discovered patterns, the information filter was shown to be successful for several
types of patterns. For the Large E-commerce site, the subjectively interesting frequent
itemsets turned out to be the ones with low objective parameters, indicating a lack
of expected cross-traffic between certain areas of the site. The product clusters that
represent products from multiple categories indicate a potential for additional links
to lead users to products that aren’t necessarily related in the content hierarchy.
Perhaps the greatest benefit of the subjective interestingness measure is its ability

to quickly confirm that a Web site is being used as designed. While the marketing
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analyst may be searching for that previously unknown pattern that can be used to
increase sales, the lack of unexpected results is probably an ideal result from a Web

site designers point of view.

The results of the Chapter 8 experiments show that meaningful knowledge does
not come simply by throwing Web logs through a generic automated process. First, a
positive method of session identification is crucial to getting accurate results. Ideally,
an identification method that allows for the identification of repeat visitors should be
used. While this thesis focused on the patterns that can be discovered from individual
sessions, the behaviors of users over time as they re-visit a site would provide a much
richer data set for analysis. Next, without knowledge of the site structure, the page
view identification step can not be completed. Whether a Web site is single or multi-
framed has a large effect on the amount of preprocessing that must be performed and
the types of filtering that will be needed for the discovered patterns. In addition,
dynamic sites pose different preprocessing challenges than predominantly static Web

sites.

The field of Web Usage Mining is very young, and accordingly the list of open
issues is quite long. From this thesis alone, further work needs to be done to automat-
ically determine page usage types, verify the path completion heuristic, and develop
and test further quantification methods for the information filter. The effect of the
difference between logged and actual page view times needs to be investigated. Also,
the pattern analysis results need to be tailored to the various application areas such

as usability testing, personalization, and business intelligence.

As the handling of the page files moves away from Web servers and towards the
content and application servers, the location for automated data collection needs
to be moved. For the Large E-commerce site analyzed in Chapters 8 and 9, an

extraordinary amount of work went into preprocessing the raw Web server log in order
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to infer information that would have been readily available from the content server
used by the site. Also, the task of URI translation, which is now a predominantly
manual process, could be easily automated from within a content server, since it is
responsible for the content creation.

Ultimately, whether the clickstream data comes from the client, Web server, or
content server, effective Web Usage Mining will continue to grow as an important

tool for analyzing, optimizing, and personalizing Web sites.
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