
Experiences with an Object Oriented Framework
for Distributed Control Applications ∗

Raja Harinath† University of Minnesota
Jaideep SrivastavaUniversity of Minnesota

Jim Richardson Honeywell Technology Center
Mark Foresti Air Force Research Laboratory

{harinath,srivasta}@cs.umn.edu, richardson_jim@htc.honeywell.com, forestim@rl.af.mil

This paper describes our experiences with the
design and implementation an object-oriented
framework for distributed control applications.
The salient features of our framework are briefly
explained. Next, the paper explores the chal-
lenges faced in integrating commercial off-the-
shelf (COTS) object-oriented products into the
framework, and how it affected the design and
implementation.

1 INTRODUCTION
In this paper we describe an object-oriented

framework for distributed control applications.
The control applications fall into two dis-
tinct categories, namely the command-and-
control applications found in the military
[Huanget al. 1996], and the process control
applications found in industrial automation
[Huanget al. 1996, Agrawalet al. 1996]. This
framework is part of a distributed multimedia

∗This work is supported by Air Force contract number
F30602-96-C-0130 to Honeywell Inc., and via subcontract
number B09030541/AF to the University of Minnesota.
† Corresponding author

Permission to make digital/hard copy of part or all of this
work for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage, the copyright notice, the title of
the publication, and its data appear, and notice is given that
copying is by permission of the ACM, Inc. To copy other-
wise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee.
c () 2000ACM 00360-0300/00/0300es

infrastructure being built by the University of
Minnesota and Honeywell, Inc., in collaboration
with the U.S. Air Force.

Figure 1 shows an example distributed con-
trol application. In this case, the map server,
aircraft tracking, and target information are dy-
namic sources of information. Different parts of
the organization are interested in different sub-
sets of the aggregate information. For example,
the strategic command is interested in target re-
connaissance videos, and various views of the
targets to help plan missions. The tactical com-
mand is interested in the status of current mis-
sions, and their feasibility, both in terms of re-
sources, and timeliness. Having up-to-date in-
formation is crucial for good decision making in
either scenario.

As this example illustrates, this framework has
some special needs. First, changes in the sit-
uation being monitored must be propagated to
the end user/application with appropriate time-
liness and information quality guarantees. Sec-
ond, a wide range of data types, including con-
tinuous media like audio and video, and others
like text, images and records, must be managed.
Finally, there is the requirement to use commer-
cial object-oriented technologies as much as pos-
sible.

The remainder of this paper is organized as
follows: In Section 2 we describeactive views,
a new framework for distributed control appli-
cations. In Section 3 we discuss the chal-
lenges faced in integrating commercial off-the-

1

2 • R. Harinath, J. Srivastava, J. Richardson, M. Foresti

Command
Tactical

Command
Strategic

Map Server

Tracking
Air Platform

Database
Target

Status
Current
View

Targets
View of

Figure 1: Example distributed control application

shelf products into our framework. In Section 4
we discuss some of the other technical issues we
faced, and how they were addressed. In Section 5
we describe the experiences we’ve had so far.

2 ACTIVE VIEWS: A F RAME-
WORK FOR DISTRIBUTED CON-
TROL APPLICATIONS

The principal goal of the framework was
to develop a unified model to handleperi-
odic (audio/video) andaperiodic (control in-
formation, updates to a database) streams
of data. A secondary goal was to allow
the user to use the framework as a black-
box [Fayad and Schmidt 1997], with the abil-
ity to compose existing views in simple meta-
programs, similar to the block-based program-
ming metaphor [Huanget al. 1996]; at the same
time providing a more sophisticated user with a
useful programming environment.

This framework is calledactive views, where a
user specifies his needs using a declarative view
definition language. The view isactive in the
sense that updates to the actual situation (base
objects) are propagated to the view with the spec-
ified qualitative requirements, commonly known

as quality of service (QoS) parameters.

The model We consider a set of source ob-
jects, and a set of view objects whose state is a
function of the states of some of the source ob-
jects. An example of such a function is database
selection, clipping a video stream, or synchro-
nizing an audio and video stream. Even the
display window can be modeled as a view, the
function being rendering of information on the
screen.

We model streams as a sequence of state up-
date operations. For example, for a database
objects, the interface consists ofinsert ,
delete , and modify operations. For an
MPEG stream, the operations could beap-
pendIFrame , appendPFrame , and ap-
pendBFrame , that map directly to the frame
types on the data stream. This allows us to uni-
formly handle the composition of objects that act
upon the streams, be they periodic or aperiodic.

The framework The framework consists of a
set of interface roles that allow the composition
of objects through their interfaces, the Active
View services, and a library of view objects.

ACM Computing Surveys, Vol. 32, No. 1, March 2000

Experiences with an Object Oriented Framework for Distributed Control Applications• 3

Each role defines a set of interface require-
ments, and thus there exists a family of interfaces
belonging to each role. The interface roles are:

• Passive– this role does not specify any in-
terface requirements.

• StateCopier– an object exporting an inter-
face in this role can be queried for its state
information, and it responds with a set of
operations that can be used to duplicate its
state. For example, a database would emit
a stream of inserts, one for each record. An
MPEG stream would just emit the current
image as aI frame.

• Notifier – this role is derived from the
StateCopier role, and requires a Sub-
scriber/Publisher interface. When an object
subscribes to a Notifier, the StateCopier role
is implicitly assumed by the Notifier. In ad-
dition, any later changes to the state of the
Notifier object are passed on to all objects
subscribing to it. Thus, in essence the Noti-
fier provides an incremental StateCopier.

• HistoryNotifier– this role encapsulates the
idea of a log, or state history. We can
use this to query for an earlier state of an
object. It can also be used to model an
MPEG movie, for instance – the movie
file could be modeled as a log ofap-
pend[IPB]Frame operations.

Individual active view objects export one or
more of these interfaces. An object with an Pas-
sive interface can be used as a target to a State-
Copier of the same interface, or can subscribe
to a Notifier of the same interface. An interface
in the Passive role can be thought of as an “in-
put” to the active view, and an interface with one
of the other roles can be thought of as an “out-
put” of the active view – the notions of “input”
and “output” need not, but generally do, coin-
cide with the direction of data flow between the
objects.

An example interface would be aSet. An ob-
ject with aSet Passiveinterface can handlein-
sert , delete , and modify operations. It
could be a database table, a database view, or

a display. For example a map would export a
Set interface, and would show a new marker on
an insert , remove the marker on adelete ,
and move the marker on amodify operation.
An object with aSet Notifierinterface can es-
sentially generate the Set operations – e.g., the
source objects, or a filter (or view) object which
can export both a Passive and a Notifier role.

Set Notifier

Set Passive

Set Notifier

Set Passive

Air Platform
Tracking

Select Region

View
Map

AV1- The Source

AV2 - The Filter

AV3 - The Display

Subscription
Direction of data flow/
update propagation

Figure 2: Example Active View Program

Example An example application is illustrated
in Figure 2. The application is to show a map
annotated with moving icons representing all the
planes flying in a geographic region. Each of the
objectsAV1, AV2 and AV3 are active view ob-
jects. The AV1 object is a source, and exports
a Set Notifier interface. AV2 exports both a Set
Passive and a Set Notifier interface. The Set Pas-
sive interface of AV2 subscribes to the Set Noti-
fier of AV1. Similarly, the Set Passive interface
of AV3 subscribes to the Set Notifier of AV2.
AV1 emits all changes to aircraft positions on its
Notifier interface. AV2 filters those update no-
tifications allowing only those that occur in the
region of interest to AV3, the display. Each of
these objects could be composed of other objects
in a similar way. For example, AV3 could be
composed of a map database and a display win-
dow that overlays a map with a set of markers.

ACM Computing Surveys, Vol. 32, No. 1, March 2000

4 • R. Harinath, J. Srivastava, J. Richardson, M. Foresti

3 USING COMMERCIAL OFF-THE
SHELF (COTS) PRODUCTS

Due to many reasons, including development
cost and standards in the application domain, we
decided to use commercial off-the-shelf products
for distributed object services, and for persistent
object management. Choosing out of the many
that fit our particular needs was quite important.

The COTS products that we picked were
Iona’s Orbix and Object Design’s ObjectStore.
The application domain standards mandated the
use of CORBA [OMG 95]. We chose Orbix in
view of its dominant presence in the Unix en-
vironment. The selection of an object database
was much more difficult – since there are a
plethora of products, but no standard. We chose
ObjectStore, based on a survey of OODBMSes
[Pazandak and Srivastava 1997].

The choice of these products strongly affected
the design and implementation of our system.

Object Systems Interoperability We were
faced with the problem of handling three
different object systems, i.e., the one that
comes with the programming language (C++),
the distributed object management system
(CORBA/Orbix), and the object database system
(ObjectStore). There is enough difference in the
three approaches and their abilities that we had
to consider interoperability issues. For example,
CORBA and ObjectStore have different object
granularities – we could model an ObjectStore
collection as a CORBA object, but the individual
objects that comprise such a collection couldn’t
be easily fitted into the CORBA model.

The CORBA model defines an object by its
interface, while the ObjectStore model is tied to
the the implementation of an object. Thisten-
sionboth helped and hampered us. It helped us
in that the two systems affected different parts
of the design, and changes made for one did not
affect the other too much. It hampered us by in-
creasing the number of variables to deal with in
the overall design and implementation.

Distribution A related issue was that CORBA
and ObjectStore have different models of distri-

bution – this strongly affected our model of dis-
tribution.

CORBA was mainly useful in making our
framework support distributed applications. We
discovered that, since our framework imposed
certain requirements on the style of code written,
making it distributed was relatively easy. The
transition to using CORBA was reasonably pain-
less, once we understood the conceptual differ-
ences in the object models.

Database Design ObjectStore’s implementa-
tion exposedreferencesemantics, which are
not naturally modeled by conventional database
views. We thus had to make some basic changes
to our model to accommodate this.

4 OTHER ISSUES
Some of the other issues that we considered in

designing our framework are:

Choice of an object-oriented language The
choices were C++ and Java. C++ has more ma-
ture off-the-shelf products, but Java claims to be
the language of choice for distributed objects.

We felt that C++ should be the language
used, since most of the COTS products for Java
weren’t mature enough at the time.

We used C++ templates extensively to en-
force interfaces, without being too dependent on
a class hierarchy to provide it. This was of great
help when we had to modify our class hierarchy
to accommodate Orbix and ObjectStore. Also,
the concept of templatetraits helped us hide
the differences in accessing persistent and non-
persistent objects, and differences in accessing
local and remote objects.

Real-time and QoS We envisioned the appli-
cation being used interactively, with the presen-
tation of multiple related data-types at the same
time. For example, one window would show a
map, another would show a video of the same
location, and another would lists the resources in
that area.

In enforcing real-time and QoS requirements
[Wijesekara and Srivsatava 1996], we were
strongly limited, since we had no good model of

ACM Computing Surveys, Vol. 32, No. 1, March 2000

Experiences with an Object Oriented Framework for Distributed Control Applications• 5

the behavior of the COTS products that we used.
Due to this, we have not yet addressed these
issues in our implementation.

5 CONCLUSION
From conception to design to implemen-

tation, we learned and re-learned many of
the lessons in [Schmidt and Fayad 1997]. We
found that just deciding to use COTS tech-
nologies wouldn’t immediately solve all our
problems in the areas they address. This
framework benefited strongly from being in-
crementally designed from earlier frameworks
[Huanget al. 1996, Agrawalet al. 1996].

In conclusion, we believe that the use of COTS
technology has added value to our project, and
the benefits of using them outweigh the costs.
The support for persistence and the support for
distribution have allowed us to enhance and en-
rich our framework.

REFERENCES
AGRAWAL, M., KENCHAMMANA-
HOSEKOTE, D. R., PAWAN, A., BHAT-
TACHARYA, S., AND VAIDYANATHAN, N.
High Performance Network Services for
Multimedia-Integrated Distributed Control.
Technical report, Honeywell Technology
Center, Minneapolis, MN (July 1996).

FAYAD, M., AND SCHMIDT, D. Object-
Oriented Application Frameworks.Communi-
cations of the ACM, 40, 10 (October 1997) 32–
38.

HUANG, J., KENCHAMMANA-
HOSEKOTE, D. R., RICHARDSON, J.,
SRIVASTAVA, J., FORESTI, M. Presto: A
Multimedia Data Management System for
Mission-Critical Applications. InProceedings
of the 6th IEEE Dual-Use Technologies and
Applications, Utica, New York, IEEE (June
1996) 103–108.

OBJECT MANAGEMENT GROUP.The Com-
mon Object Request Broker: Architecture and
Specification.Revision 2.0 (July 1995).

PAZANDAK, P., AND SRIVASTAVA, J. Eval-
uating Object DBMSs for Multimedia.IEEE
Multimedia, 4, 3 (July-September 1997) 34–49.

SCHMIDT, D., AND FAYAD, M. Lessons
Learned: Building Reusable OO Frameworks
for Distributed Software.Communications of
the ACM, 40, 10 (October 1997) 85–87.

WIJESEKARA, D. AND SRIVASTAVA, J.
Quality of Service Metrics for Continuous Me-
dia.Multimedia Tools and Applications, 3 (Sep.
1996) 127–166.

ACM Computing Surveys, Vol. 32, No. 1, March 2000

	Introduction
	Active Views: A Framework for Distributed Control Applications
	Using Commercial Off-the Shelf (COTS) products
	Other Issues
	Conclusion

