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Reconstruction-Based Recognition of Scenes

with Translationally Repeated Quadrics

Ragini Choudhury, J.B. Srivastava, and Santanu Chaudhury, Member, IEEE

Abstract—This paper addresses the problem of invariant-based recognition of quadric configurations from a single image. These
configurations consist of a pair of rigidly connected translationally repeated quadric surfaces. This problem is approached via a
reconstruction framework. A new mathematical framework, using relative affine structure, on the lines of Luong and Vieville [12], has
been proposed. Using this mathematical framework, translationally repeated objects have been projectively reconstructed, from a
single image, with four image point correspondences of the distinguished points on the object and its translate. This has been used to
obtain a reconstruction of a pair of translationally repeated quadrics. We have proposed joint projective invariants of a pair of proper
quadrics. For the purpose of recognition of quadric configurations, we compute these invariants for the pair of reconstructed quadrics.
Experimental results on synthetic and real images, establish the discriminatory power and stability of the proposed invariant-based
recognition strategy. As a specific example, we have applied this technique for discriminating images of monuments which are
characterized by translationally repeated domes modeled as quadrics.

Index Terms—3D objects, reconstruction, recognition, projective invariants, translationally repeated objects, quadrics.

4

INTRODUCTION

IN this paper, we have addressed the problem of
recognition of scenes composed of translationally re-
peated quadrics. Quadrics have been assumed to be rigidly
placed, that is, the translation between the quadrics is fixed.
Quadrics are 3D shapes like ellipsoids, hyperboloids, etc.
They can occur as individual objects or as parts of more
complex objects. There are many examples of real 3D scenes
where each of these objects are configured in a repeated
manner. Historical monuments of architectural significance,
with multidome structure (Figs. 6, 7, and 8), are typical
examples of such scene configurations, where each of the
domes can be modeled as a quadric (ellipsoid) (Fig. 9). The
proposed recognition scheme involves a projective recon-
struction of the quadrics from a single image of the scene
and computation of projective invariants for a pair of
proper quadrics. We have carried out experimental in-
vestigations on synthetic and real images, to study the
discriminatory power and the stability of the invariant-
based recognition strategy. We have applied this technique
for identification of historical monuments and have
received encouraging results.

Invariant-based recognition schemes for 3D objects are

appealing because invariants provide viewpoint indepen-
dent descriptors of these objects. However, unlike planar

o R. Choudhury is with INRIA Rhone-Alpes, ZIRST-655 avenue de
I"Europe, 38330 Montbonnot, St. Martin, France.
E-mail: Ragini.Choudhury@inrialpes.fr.

e |.B. Srivastava is with the Department of Mathematics, IIT, Delhi , Hauz
Khas, New Delhi 110016, India. E-mail: jbsrivas@maths.iitd.ernet.in.

o S. Chaudhury is with the Department of Electrical Engineering, IIT Delhi,
Hauz Khas, New Delhi 110016, India.
E-mail: santanuc@cse.iitd.ernet.in.

Manuscript received8 Mar. 2000; revised 17 Oct. 2000; accepted 12 Dec.
2000.

Recommended for acceptance by P Flynn.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 111661.

objects [19], [8], [10], [16], [17], [18], it is not possible to
formulate invariants for the general class of 3D objects [24].
Invariants of only specific classes of 3D objects can be
computed from a single image, by exploiting certain class
specific geometric constraints [2], [24], [15]. Translationally
repeated objects and algebraic surfaces are two such classes.
Quadrics are algebraic surfaces. In this paper, we explore a
combination of these classes in the form of translationally
repeated objects in which each of the components is a
quadric and exploit the geometric constraint of repetition.
In this paper, we have proposed a reconstruction-based
recognition strategy for translationally repeated objects and
applied it specifically to the case of translationally repeated
quadrics given a single image of a repeated object. The
proposed recognition scheme uses joint projective invar-
iants computed from the pair of reconstructed quadrics.
This approach for recognition of translationally repeated
quadrics via projectively reconstructed quadric components
is the unique contribution of the paper as such reconstruc-
tion-based recognition schemes are few in the literature
[24]. In fact, the recognition strategy is general and
applicable to all repeated objects for which invariants can
be computed.

Work on repeated objects in the past has concentrated on
their reconstruction, handled by converting a single image
to the equivalent multiple view of the single instance. This
has lead to the convergence of the single view [13], [14] and
multiple view-based approaches [7], [20]. The affine
structure for translationally repeated objects has been
obtained by Moons et al. [13] using vanishing points and
five point correspondences between the two views. Mundy
and Zisserman [14] have studied affine structure as a
projective ambiguity matrix. Shashua [21], [22] has handled
affine structure as a special case of relative affine structure.
By exploiting this affine ambiguity, Liu et al. [11] obtained
3D affine invariants for recognizing 3D translationally
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repeated objects. But, affine structure does not suffice for an
extension to reconstruction scheme for translationally
repeated quadrics. Therefore, the technique of [11] is not
applicable to quadric configurations in our context.

We first develop a new framework for the relative affine
reconstruction of translationally repeated objects from a
single uncalibrated image by converting it to its equivalent
stereo image framework where the second camera is a
translate of the original camera. This reconstruction scheme,
in fact, is general and applicable to different classes of
translationally repeated objects. It requires the knowledge
of four image point correspondences on the object and its
translate, and the choice of four points is not critical to the
strategy. A new mathematical framework has been pro-
posed for transforming a pair of uncalibrated cameras such
that the first camera gets aligned. The second camera matrix
involves a homography between two image planes and a
normalized second epipole, both of which are computable
from image information. Although relative affine structure
has been obtained in the past [21], [12] using two images of
the object, the novelty in the contribution of our paper lies
in the modifying the existing formulation and developing
the theory which handles reconstruction of repeated objects
from a single image. Reconstructing the translated compo-
nent from the available information has not been handled in
the past.

In the particular case of applying the above scheme to
reconstruct translationally repeated quadrics, we require
additional information of the outline conics. The relative
affine structure has been necessitated by quadric recon-
struction. Although Shashua and Toelg [23] and Cross and
Zisserman [6] have reconstructed quadrics using two views,
they do not address the problem of repeated objects.
Shashua and Toelg [23] reconstructed a quadric reference
surface using the knowledge of outline conic and four point
correspondences in the two images. Cross and Zisserman [6]
do a quadric reconstruction using dual space geometry.
Repeated applications of these strategies, either by taking
both the components together or by reversing the camera set
up, will lead to components which are reconstructed with
respect to different frames and, hence, cannot be used for
computing joint invariants essential for recognition. Our
reconstruction framework overcomes this difficulty by
incorporating the repetitions in the same frame.

The invariants computed using these reconstructed
quadrics have the ability to distinguish quadric configura-
tions on the basis of translation between the quadrics and
the nature of quadrics. Consequently, the invariants are
appropriate for recognition of different configurations like
historical monuments which are distinguished by the
location of repeated quadrics and the nature of quadrics.
The occurrence of multiple quadrics and the relatively large
separation between the quadrics on the actual structures
make this approach robust against occlusion. An alternate
framework to handle occlusion specifically has been
developed using the repetition explicitly [4].

The paper is organized as follows: In Section 2, we define
the problem and give the mathematical background
required for the paper and give the projective ambiguity
matrix used in reconstruction. Section 3 gives a projective
reconstruction of translationally repeated objects, in

general. In Section 4, we have reconstructed a pair of
translationally repeated quadrics. Section 5 deals with the
computation of joint projective invariants for an arbitrary
pair of proper quadrics. These invariants are then used for
the purpose of recognition of quadric configurations.
Section 6 contains experimental results regarding discrimi-
natory power and the stability of the strategy. Implementa-
tion has been done on synthetic and real images. The
applications of the theory developed have been carried out
for the special case of famous historical monuments, which
contain translationally repeated domes. This is followed by
a section which gives the conclusions. Finally, the Appendix
contains the proofs of some of the theorems referred to in
the paper.

2 PROBLEM DEFINITION AND APPROACH TO
SOLUTION

Our aim in the paper is to recognize translationally repeated
3D objects. They consist of components S and S such that
S"=T(S), where

T = Hf H t=(tita ts)'
denotes translation. Such objects are called Translationally
repeated objects. With this end in view, we propose a
reconstruction-based recognition strategy for such objects.
We will first reconstruct the two components with respect
to the same frame and use these to compute the values of
the projective invariants. These values are used for the
purpose of recognition.

The recognition and reconstruction of translationally
repeated objects is handled by converting the single camera
framework to its equivalent stereo framework. A camera
here means a perspective uncalibrated camera represented
by a 3 x4 matrix of the form [P p] with det(P) # 0 and
centre of perspectivity (COP) in homogeneous coordinates

given by
—_p1 P
1 .

Let P = [P p] and P’ = [P’ /] represent two cameras in the
equivalent stereo framework with respective center of
perspectivities given by

_p-1 _p-1,
coplz( Pl p) andC’OPQ:( P1 p>

and having respective image planes R; and R;.
Let M = (XY Z1)' represent an arbitrary 3D point in
homogeneous coordinates. Define

Ty / ZM
Ym / M
1

m=[PplM = zy = m,

A=2y#0 and m = (zy1)" is observable in the image.
Similarly, m’ = [P'p'|M = Xm/, XN #0,m’ = (' ¢/ 1)', where
m/ is observable in the image. By definition, m and m' or m
and m’ are said to be corresponding points.
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The epipoles are defined as

, €1
N 7P_1'
e—[Pp]( p)—)\ee, e=| e

1
1

and
/
e
_p-l 1
e =[P p’]( . p) =\e€, €=|¢,
1

We now define the homography Hy from image plane
R, to the image plane R;. Let II be a plane which does not
contain COP; and COP,. Let hy = [Pp]ly : I - Ry and
hy =[P Py : I - Rs denote the restriction of [P p] and
[P' p'] to the plane II, respectively. This means h,M =
[P p]M and hoM = [P' p'|M for every M € II. Since COP’s
do not belong to II, both h; and hy are invertible. Define
Hp : Ry — Ry by Hp = hsh;'. Hy is called the homo-
graphy from R; to Ry via the plane II. By definition for
every M € II, we have

Hyiv = hohy '[P p]M = hohi 'hy M = hyM = [P p/|M = 7.

Hi is represented by a 3 x 3 nonsingular matrix upto a scale
and, hence, Hy has eight independent parameters. Each
image point contributes two parameters. Thus, given four
image point correspondences of points in general position,
the homography Hy; can be computed upto a scale [3], [21].

When II =1l (the plane at infinity) then Hp = H.
Then, hy = P and hy = P' and H,, = hohy! = P'P~L. With
our notations, we can prove the following: 1) Hye = ¢’ for
somey € R, v#0,2)¢ =p' — Hyp,and 3) H, e = —¢ (See
Appendix for proof).

We first develop a framework for the projective (relative
affine) reconstruction of the components with respect to the
same frame (Section 3). For this we define a projective
reconstruction matrix which transforms the cameras into
image computable form. Here, we follow broadly Luong
and Vieville [12] for aligning the first camera [P p] using
relative affine framework. Define,

P p

e [Lﬁv wv}’ Ly = =y, Py vw = =i, p + Alle]],
where v} = e},(Hn — Hy) and €}y = €//||¢/|| (see Appendix
for proof). It can be verified that H is invertible. Also the
cameras can be transformed by H, to

[P p] = [I; O/H, [P’ p] = [Hnu ey]H.
= [P p|M = [I; OJHM, @/ = [P’ p)M = [Hy €yJHM.

Thus, the transformed cameras [I3 0] and [Hy €)y] map
HM to the same points as original cameras [P p] and
[P' p/] map M.

Next, using this reconstruction matrix, we propose a
method of reconstruction of quadric components with
respect to the same frame, based on the method of Shashua
and Toelg [23]. In fact, the relative affine reconstruction has
been necessitated by the quadric reconstruction. Values of
invariants computed using these reconstructed components
are used for recognition.

3 PROJECTIVE RECONSTRUCTION OF
TRANSLATIONALLY REPEATED OBJECTS

The main aim in this section is to develop a framework for
the projective (relative affine) reconstruction of translation-
ally repeated objects. The reconstruction problem for
translationally repeated objects from a single image is best
handled by converting the problem from the single image
framework to the equivalent stereo image framework in
[3]. If in the stereo conversion, the original camera is [P p)
and the translated camera is [P’ p'], then we have [P p|M’
=[P p|]TM = [P’ p']M. Therefore, we have [P’ p'| =[P p|T
=[P Pt+p] giving P'=P, p=Pt+p, and COP, =

1
(_P 1p h t). This shows that

T(COP,) = COP,. (1)

Also, H,, = P'P7' =1 and, hence, from Section 2.2,
Hye=¢e=—¢.

We obtain a relative affine reconstruction on the lines
of the fundamental work of Shashua and Navab [22]. The
value of k computed in Lemma 3.1 characterizes the
relative affine structure and has been obtained by
Shashua and Navab [22] and Luong and Vieville [12].
By computing the k£ in Lemma 3.1, we will have
reconstructed the first component pointwise. The second
component is reconstructed with respect to the same
frame in Theorem 3.2. The homography Hp can be
computed, in theory, using three noncollinear points on
the plane II [3]. But, all the scalar multiples of the
homography are projectively the same homography. The
proof of Lemma 3.1 [3], [21] and Theorem 3.2 takes into
account the scaling at each stage, mathematically.

Lemma 3.1 Relative Affine Structure. Let M;, i =1,2,3,4
be four points in general position on the object S and let
M, i1 =1,2,3,4 be the corresponding points on the translated
object S'. A single uncalibrated perspective image of an object
containing S and S together with the image point correspon-
dences m; and m/, i = 1,2,3,4 of the above points is given. If
m = (zyl)" and m' = (' 1)" is a point correspondence of a
3D point M € S and the corresponding translated point
M' € S', then M is projectively reconstructed as (zy1k),

where k = X ) g, proof see [3], [21].

ll’ ey

It is assumed that enough image information is given, so
that the epipoles and the homography Hy can be computed
for a suitable plane IT using image information only [3], [21].
The actual scale of the homography is fixed using an
additional point not lying on the plane. Having recon-
structed the first component pointwise using Lemma 3.1,
the second component is to be reconstructed with respect to
the same frame. This is done in Theorem 3.2. This is not
possible by a simple repeated application of the relative
affine framework of Shashua and Navab [22], or by any
other reconstruction framework, as the two components
will be reconstructed with respect to different frames and,
hence, cannot be used together for any meaningful
computation like joint invariants. We have been able to
incorporate and reconstruct both the components with
respect to the same frame, which is a novel contribution of
this paper.
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Theorem 3.2. Projective Reconstruction: Translationally
Repeated Objects. Let M;, i =1,2,3,4 be four points in
general position on the object S and let M, i =1,2,3,4 be the
corresponding points on the translated object S'. A single
uncalibrated perspective image of an object containing S and
S’ together with the image point correspondences m; and

', i =1,2,3,4 of the above points is given. If m = (zy1)'
and m' = (z'y 1)" is a point correspondence of a 3D point
M € S and the corresponding translated point M’ € S', then
the translated point M’ is projectively reconstructed as
(«/ o/ 1K)", where

m;,

. (m x ey) [(Hym' — 2m') x m)]

[[m x ely[?
Here, I1=< My, My, M3 > = the plane defined by M., My, M;.

Proof. Here, we will reconstruct M’ projectively as HM'.

HM' = HT(M) = ( PM + Pt +p )

LiyM + Lt + vy

Pt

Pt Lit

HM + ( It t) for any 3D point M. In particular, when
N

M =COP,

Thus, H]V[/:HMJr( ) So, we get HT(M) =

HT(COP,) = H(COPy) + ( L]‘;tt > @)

Premultiplying both sides of (2) by [I3 0] and simplifying
using (1), we get

[P pl(COP,) = [P p|(COP,) + Pt = 0 =€ + Pt,
i.e, Pt =—e¢. Premultiplying by [Hpe€ly] in (2) and
simplifying, we get

[P’ p'](COP) = [P p)(COP) + HuPt + ey Lt

= ¢ = —Hpe + ey Lit,

where Hyie = ~v¢'. Thus, Lit = (1 + )\ ||¢]].
Thus, we have

rr = (). 3)

[Is O)HM' = [I3 O)HM — & = [P p| M’

From (3), we get

[Hy e\ JHM' = [Hy €yJHM — Hye + (1+7)Ae|€||ey
!/
e
[P p|M" = [P p]M —7&' + (1 + ) |le]] el
=i & =m —e=2m —m

(using (4) and since ¢’ = —e). But,

~
P W = [ 0 =t ] 17, )

— Hyt! + NKey = X (Hym' + Kély).

Equating the two values, we get
2m' —m = N(Hym' + K'e)y),

ie, —Am = N(Hpm' — 2m’ + K ¢}). Taking cross product
with m and simplifying, we get
t

o (m x €)' [(Hum' — 2m') x m]

[[m x e ll”
and
HM = (%t )\/k/)t _ )\/(m/t k/)t ~ (m/t k/)t _ (:L'/ y/ 1 k/)t7
as desired. O

We can now compute &/, the relative affine structure, for
each point on the repeated component and, hence,
reconstruct each such point. Thus, the second component
is completely reconstructed with respect to the same frame.
As can be seen, in the expressions for k£ and £/, all the entities
are computable from the image. By (4), m' = m — €,
which indicates a linear combination between m/, m, and €.
Since we are using a single image, this implies that m,m/, ¢’
are collinear and this holds for all m,m/. Thus, ¢ can be
computed by exploiting the fact that €' is the point of
intersection of lines joining m,m] and mq,mj. Also,
Hum; = m), i=1,2,3 Hpe=¢/, where Hpye = ¢ is used
to set the scale. A procedure for computing Hy and € can
be found in [3], [21].

Since Hp computed above is upto a scale, therefore, a
change in scale of Hy will cause a change in the value of k&
and k. In order to fix the scale of Hy;, compute k, for point
M, not lying on the plane II. Subsequently, use Hy = 1?14 Hy
as the homography matrix. The value of £ now obtained is
called the normalized value of k. The value of k and %’ are
obtained using the formulae in Lemma 3.1 and Theorem 3.2
(all values in the formulae are computable from the image).

4 RECONSTRUCTION OF A PAIR OF
TRANSLATIONALLY REPEATED QUADRICS

This section deals with the objects considered in the
previous section under the additional assumption that S
is a quadric surface and S’ =T(S) is the translationally
repeated quadric surface. The aim is to projectively
reconstruct the quadric surfaces S and S’ using the
reconstruction carried out in Section 3, the main theoretical
results for which are in Theorem 4.1 and 4.2. A computa-
tional procedure for the same is also given in this section.
The importance of the study of such objects is obvious from
the fact that quadrics appear in a repeated form, naturally
in daily life in the form of minarets, dumbbells, paper-
weights, etc. Also, objects could be locally quadric as
discussed in [6]. In this paper, we do reconstruction of
repeated quadrics from a single image of the configuration
which, to the best of our knowledge, has not been done
before.

A quadric surface is an algebraic surface consisting of all
points in P? in homogeneous coordinates satisfying a
homogeneous polynomial of degree 2 in four variables
X1, X2, X3, X4 over the field IR of real numbers. The general
equation of the quadric surface is

S =S(X1, Xy, X3, Xy) = B, 51,45 X X = 0,
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ie, S(X)=X'QX =0, where Q= (g;) is a 4x4 real
symmetric matrix and X = (X; Xy X3 X4)t is a homoge-
neous 4 x 1 vector. The quadric surface defined above is
said to be proper if det(Q) # 0, i.e., Q is nonsingular. The
nonsingular 4 x 4 symmetric matrix ) upto a scale,
completely determines a proper quadric surface and, as
such, it is enough to determine (). This contributes
10 parameters (as only the diagonal and upper diagonal
entries are significant). Since the matrix ¢ and the nonzero
scalar multiples of () determine the same quadric surface,
there are nine independent parameters. Thus, there exists a
unique quadric surface passing through nine given points
in general position in 3D. In general position means no four
of these are coplanar. Each 3D point X (say) lying on
the quadric contributes a single equation in the form
X!QX =0. Since @ has nine unknowns, nine such
equations are required. This indicates that we should have
enough image information from which we can recover the
nine parameters. This leads to the choice of image
information for the reconstruction framework proposed in
Theorem 4.2.

Given a 3D point not belonging to the quadric, tangents
are drawn to the quadric from this point. If the given point
is the COP of the perspective camera, the locus of the point
of tangency is called the rim of the quadric and the image of
the rim is called the outline conic. Since the tangency is
preserved under a projective transformation and, as seen in
the previous section, the images of a 3D point M by the
original camera and the images of HM by the transformed
camera are identical, the outline conic of the original
quadric @ is the same as the outline conic of the
reconstructed quadric Q = H(Q) = {HM|M € Q}.

Let
_ Q33 Q)
Q= < ¢ qu)’

Q33 a 3 x 3 matrix, g a 3 x 1 vector, qu a scalar, be a quadric
and let

Q=HQ) = (%‘3 i)
T qu
be the quadric to be reconstructed. It is not difficult to see
that Q = (H")'QH ! (upto a scale). In fact, M = (XY Z 1)
lies on Q < M'QM = 0. If M lies on @, M'QM = 0. But,
M = H~'M lies on Q, hence, (H~'M)'QH ™' M = 0 for every
MeQ. So, M(H)'QH 'M=0 and Q= (H )'QH!
upto a scale. Now, we establish a relationship between the
observed outline conic C and the reconstructed quadric @,
which would help us in recovering the quadric parameters.

Lemma 4.1. Outline Conic of Q The outline conic C of Q is
determined by C= qq" — q44Q33

This has been proven in [23]. As an extension of th1s, we
have also been able to show that det(Q) = —(qi) " det(C)
Thus, @ is a proper quadric which implies gy # 0 and C'is a
proper conic.

Next in Theorem 4.2, we reconstruct Q and Q’ from the
given image information consisting of image point corre-
spondences for the four points on @ and its translate ¢’
(points chosen are not on their rim) together with their

outline conics, identified in a single uncalibrated perspec-
tive image. The four point correspondences are used to
reconstruct four points on the components using the
framework of Lemma 3.1 and Theorem 3.2. Thus, these
provide four parameters in the form of the relative affine
structure. That s, k;,7 = 1,2, 3,4 for the first component and
k,i=1,2,3,4 for the second component. The additional
five parameters of the nine parameters required for a
quadric are provided by the five parameters each of the
outline conics. We use the method of Shashua and Toelg [23]
to reconstruct the first quadric but, in order to reconstruct
the repeated quadric, this theory needs to be modified,
which is the main contribution of Theorem 4.2. Subse-
quently, in Theorem 4.3, we have shown that the scheme
does not depend on the choice of the four points, which
helps in generalizing the entire reconstruction-based re-
cognition strategy.

Theorem 4.2. Reconstruction of @ and é’. A single
uncalibrated perspective image of a pair of proper quadrics ()
and Q' is given where ()’ is a translate of (). Further image
point correspondences of four distinguished noncoplanar
points M;, i =1,2,3,4 on @Q and corresponding points

M, 1=1,2,3,4 on Q are given. Also, known in the image

are corresponding outline conics. Then, the quadrics Q and Q'

can be reconstructed projectively.

Proof. Define the plane II =< M;, My, M3 >. Let m; =
(z; v 1) and m) = (z} ¢, 1)" i=1,2,3,4 be the corre-
sponding image points of the distinguished points
M;, M., i=1,2,3,4.

Reconstruction of Q= H(Q). Let M be any point on
having an image m. In Lemma 3.1, the reconstructed
point HM ~ (zy1k)" has been computed. Since
Q = HQ, we have by Lemma 4.1 C =37 — quQs. As
commented before, the given outline conic C' of Q = the
outhne conic C of Q Also, qus # 0. Thus, Q‘;; — 194 C_

qq _c q44
@ — (Q33 q )
Ef’ q44 ’

a4
is known if we can compute g and gu consisting of
three unknowns from ¢ and 1 from qq. We have
(m! k)Q (m ) =(zyl k:)Q(x y1k)' =0, which, after
simplification, gives the equation (m'q + ki) = m'Cm.
This gives

and

m'q+ kg = £VmiCm. (5)

The sign of the right hand side can be chosen
unambiguously to be positive (see Remark 4.3 given
after the proof). Now, ¢ and g can be computed by
solving set of four equations obtained from (5) by
substituting m =m; = (z; y; l)t~ and k; as computed in
Lemma 3.1, i = 1,2, 3,4. Thus, Q has been reconstructed.

Similarly, we can reconstruct Q' = H(Q') using m/ =
(} ¥, 1) and ¥, as computed in Theorem 3.2, i = 1,2,3,4
and the knowledge of the outline conic C’ of @Q'. o

Remark 4.3. The two signs in (5) would give two values of
k, ie., k1 and ko. The two points (z y 1 ki)' and (xyl ko)’
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are the two points of intersection of the ray < HO HM >
with the quadric Q, where m = (xy1) ~ [P p|M. The
problem is to pick £ unambiguously so as to choose the
unoccluded point, which in our case would be the one
closer to the transformed COP, =HO ~ (0001)". By
referring to closeness, we are not trying to define the
distance between HM and HO since these are projective
points and the concept of distance is not defined between
them. Each transformed 3D point is equivalent to

(zyl k)!, thus, we have been able to associate a

number k with each 3D point of the ray < HO HM > .

The relative affine structure k£ can be expressed as

k :[—le—j, where d,d, are perpendicular distances of M

and M, (point lying outside the plane II), respectively,

from the plane II and z, z; are the depths of these points
from the origin [21]. M, is the point lying outside the
plane II formed by the points M;, M, M3. It is the point
used to fix the scale of Hy and to normalize k. The choice
between k; and k; is made depending on the position of

M, with respect to the COP and II. If M, lies between

COP and 11, k = max(ky, ko) and if My and COP are on

opposite sides of II, then k = min(ki, k2). We can assume

without loss of generality that gus > 0, thus, k takes the
maximum value when vm!Cm is assigned positive sign.

By adjusting the scale of Hyy, it can be shown that all the

points on the ray < HO HM > are such that the value of

k decreases as we move away from the origin, with k = 0

on the plane II and the point with maximum £ is the one

closest to the origin. Thus, the first point on the quadric
which < HO HM > meets is the one with maximum #.

Therefore, it can be inferred that a positive sign should

be assigned to vm!Cm in the (5). Hence, the choice of k&

has been made unambiguous.

Next, we give the computational scheme for quadric
reconstruction. The algorithm for the reconstruction of a
virtual quadric surface, using two images of the quadric,
has been given by Shashua and Toelg [23]. We have used
that algorithm to compute the first quadric and then used
the result of Theorem 4.2, to compute the repeated quadric
with respect to the same frame.

Algorithm: Reconstruction of Translationally Repeated
Quadrics
Input: The outline conics C; and C; of the two translated
quadrics, images m;,my, m3,my of four distinguished
points on the quadrics and their correspondences
my, mb, mh,m.
Output: Matrices of the translationally repeated recon-
structed quadrics @1 and éz.

Stepwise Methodology:

1. Pick points on the outline conic C; detected in the
image and fit a conic to it using Bookstein’s
algorithm. Repeat the same for C5.

2. Choose k1 =0,ko =0,k3 =0, and ky =1 to obtain
points (.Tl Y1 1 O)t, (1}2 Y2 1 O)t, (.1’3 Y3 1 O)t, and
(1’4 Ya 1 1)t

3. Solve for ¢}, and ¢! using the equations

i oy 1 0 G VmiCyimy
zo Y 1 0 o | | vymiCims,
zy3 ys 1 0 @ || VmiCims
zg ys 11 Ty VmiCimy

to compute él.

4. Compute k|, k, ki, k) using formula in Theorem 3.2
and obtain the reconstructed points (2}, 1K),
i=1,2,3 4.

5. Solve for ¢, and ¢* using the equations

oy 1 K ¢ /miCymy
oy vy 1 K G| _ | VmiCamo
zy oYy 1K aﬁ /mhComs
5o, 1 E)\@)  \ G

to compute ég.

As can be seen, the choice of four point correspondences of
points in general position, is essential for reconstruction.
Therefore, it becomes important to discuss how critical the
choice of four points is to the recognition strategy. A greater
independence in the choice of these points will lead to a
more general recognition strategy. In Theorem 4.3, we
discuss the effect of changing these points on the
reconstructed quadrics.

Theorem 4.3. Let Q be a quadric and Q' its translate.
My, My, M3, My are the four distinguished points on @) and
My, My, My, My are their correspondences on the quadric Q'.
The reconstructed quadrics are Q) and @', respectively. By
changing the distinguished points to M, My, M3, My, the
reconstructed quadrics are Q and qQ, respectively. These are
projectively equivalent to the original pair, that is, there exists
a projective transformation H such that Q = H'QH and
Q' = H'Q'H. (See [4] for proof).

Thus, an alternate choice of four points leads to a
projectively equivalent reconstruction of the components.
Since we use these components to compute the joint
projective invariants, and the values of the invariants
remain the same for projectively equivalent configurations,
any four points in general position can be used for
reconstructing projectively equivalent quadrics. This makes
the reconstruction scheme independent of the choice of
these four points, upto a projective transformation. This in
turn generalizes the recognition strategy.

Having reconstructed the quadrics, we will use these to
compute projective invariants, the values of which will be
used for recognition. The invariants are computed in the
next section. The reconstructed quadrics are proper because
the outline conics were nondegenerate and, hence, by
remark following Lemma 4.1, the reconstructed quadrics
are proper. Also, by Theorem 4.3, the choice of distin-
guished points is not crucial to the strategy.

5 RECOGNITION OF QUADRIC CONFIGURATIONS

In this paper, we propose an invariance-based recognition
strategy for repeated quadric configurations, where the
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invariants are computed using the reconstructed compo-
nents. By a quadric configuration, we mean a configuration
consisting of a pair of translationally repeated quadrics
which are rigidly connected. In the previous section, we
have reconstructed upto a projective transformation, a pair
of translationally repeated proper quadrics, using the image
information only. The reconstruction process yields recon-
structed quadrics which are not projectively equivalent if
the same pair is separated by different translations. In this
section, we compute the joint projective invariants of a pair
of proper quadrics for the purpose of recognition of quadric
configurations. It may be said at the very outset that the
invariants computed here hold for any pair of proper
quadrics, irrespective of whether they are repeated or not.
The nature of the invariants is such that the repeated
quadrics with different translations as well as different
nature of quadrics, will be recognized as different config-
urations. It is important that the reconstruction of both these
quadrics is with respect to the same frame (as in our
reconstruction framework) since otherwise, having ob-
tained quadrics in different frames, it would not have been
possible for us to compute their joint invariants. In the
following, we present a scheme for computing the joint
projective invariants of a pair of proper quadrics:

Let Q1 and @) be a pair of proper quadrics defined
upto a scale by 4 x 4 nonsingular symmetric matrices A
and B, respectively. Let T' € PGL,(IR) be any projective
transformation. Define transformed quadrics as Q, =
T(Q) ={TMIM = (XY Z1) € Q} = {TM|M'AM = 0}

and @, =T(Qy) = {TM|M'BM = 0}. Then, it can be
shown _that, det( )=|A] = |T"'/°|A| and det(B) = |B| =
IT-'[*1B| 3], [5

To compute the number of projective invariants of the
configuration space consisting of a pair of quadrics @; and
@2, we use the well-known formula (Gros and Quan [9]):

Number of independent invariants
= Dimension of the configuration space

— Dimension of the transformation group.

Since each quadric contributes nine independent
parameters, hence, the dimension of the configuration
space consisting of a pair of quadrics is 9+ 9 = 18. Now,
the projective group, PGL4(IR), which is the multi-
plicative group of all 4 x 4 nonsingular matrices upto a
scale, has 15 degrees of freedom. So from the formula
there are 18 — 15 = 3 independent invariants.

Now, @, and Q; are determined by matrices A and B
upto a scale, so, if the projective invariants are computed
with the help of matrices A and B, then these should be
independent of all scalars «, 5 # 0 and all T € PGL4(IR)
when computed from a4, 8B, (T~ AT, (T~")'BT!. In
the next theorem, we overcome these difficulties and
compute a set of three projective invariants. The same
methodology can be used to obtain other sets of indepen-
dent invariants.

Theorem 5.1. (Projective Invariants). If Q and Q) are the two
proper quadrics defined by symmetric nonsmgular matrlces A
and B, respectively, upto a scale, then { e %1, .5} defines

a desired set of joint projective invariants, where I, k=

1,2,3,4,5 are defined by

|)\A e /J,B| = )\411 + /\3MIQ =+ /\2/1,2]3 —+ )\,11,3[4 =+ [L4I5.

As a consequence, we have I, =|A|, I =|B|, Iy =
S bijAi, Ay is the cofactor of ay in |A], Iy =
1 ,a;;Bij, Bjj is the cofactor of b;; in |B|, and I3 = the
sum of six determinants of order 4 in which any two
columns are from A and any other two columns are from B.

(See [3], [4] for proof).

Theorem 5.1 gives one set of joint projective invariants.
Alternate choices are also possible, for example
{%‘, ﬂ*, %4} As can be seen, each of the I, k=1,---,5
are computable from the matrix of the quadrics. From the
given image information of translationally repeated
quadrics @ and @', in Section 5, we have projectively
reconstructed Q = H(Q) and Q = H(Q') upto a suitable
H € PGL4(IR). Thus, using the matrices of the quadrics, a
set of projective invariants for the pair of quadrics Q and Q'
can be computed using Theorem 5.1 above. These will be
the same if we compute from the original pair of quadrics @
and @' as these are projectively equivalent to the recon-
structed quadrics. We now have the desired invariants for
the purpose of recognition of quadric configurations. Since
changing the four point correspondences just leads to the
reconstruction of a pair of projectively equivalent quadrics
(Theorem 4.3), the choice of these four points in the
reconstruction process, has no effect on the value of the
proposed projective invariants. Hence, the choice of these
points is not crucial to the recognition strategy, making it
general in application.

6 RECOGNITION EXPERIMENTS

The experiments were undertaken in order to study the
applicability of this invariant-based recognition strategy to
the recognition problem.The two major aspects of applic-
ability are the discriminatory power and the stability of the
strategy which are investigated via experiments. Initially,
we experimented on synthetic data in order to verify the
theory [3]. The recognition strategy is then applied to
experimental scenes (Figs. 2, 3, 4, and 5) and images of real
life 3D objects with translationally repeated quadric
components like images of monuments with multidome
architecture (Figs. 6, 7, and 8). Results of these experiments
establish the effectiveness of our reconstruction-based
recognition scheme.

For all images, the conics were fitted interactively by
using Bookstein’s algorithm [1] (Fig. 1). The correspon-
dences between known points on the translationally
repeated objects were used and have been distinctly
identified in some objects to establish correspondence. The
processing routines were developed using MATLAB.

6.1 Discriminatory Power of Invariants

In order to compare two sets of values of invariants, a
distance measure is required. For all pairs of different
images im;,im;, we define the distance used by Quan and
Veillon in [18], as

Sy (Velima] = Vilim))?, (6)
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Fig. 1. Outline conics fitted to some experimental scenes.

where V;[im;] is the value of the kth invariant of image i. For

our results, we will take the linearly independent set to be
I oL I

{11515 ’Iifé ’ 134}5}'

6.1.1 Experimental Scenes

We take the experimental scenes (Figs. 2, 3, 4, and 5). Each
of the vases (Fig. 2) are modeled as hyperboloids, bowls
(Fig. 3) and bottles (Figs. 4 and 5) as ellipsoids. We apply
our framework to each of the images and compute three
independent invariants which are shown in Table 1. The

Fig. 2. Two views of transitionally repeated vases.

distances between the sets of invariant values of the images
are shown in Table 2. The actual distances obtained using
(6) have been relatively scaled by a factor of 10'* so that they
can be meaningfully analyzed.

It can be observed that the distances indicate the
discriminatory power of the invariants. Two views of the
same pair of vases are projectively equivalent. This
scenario is equivalent to the camera being fixed and the
same projective transformation being applied to quadrics.
The study of the distances in Table 2 show that the

(b)

Fig. 3. Two views of transitionally repeated bowls.
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Fig. 4. Two views of transitionally repeated bottles.

(@)

(b)

Fig. 5. (a), (b) Two views of transitionally repeated. (c) Bottles seperated by a different translation.

Fig. 6. Views of the Taj Mahal, Agra, India.

distance between projectively equivalent configurations
(say, Figs. 3a and 3b) is much less as compared to its
distance from other configurations (say, Figs. 4, 5, and 6),
which are not projectively equivalent to it. This indicates
that our recognition strategy, in which invariants are
computed using reconstructed components, has a high
discriminatory power.

The invariants also have the capability of distinguishing
between the configurations on the basis of translation
between them. Figs. 5a and 5b are two views of the same
configuration, that is, the components have the same

translation and Fig. 5¢ has a different translation. This is
indicated by the fact that the distance between Figs. 5a and
5b is 4.5975 which is less than the distance between Figs. 5a
and 5c (2.754e6) and Figs. 5b and 5c¢ (2.747e6).

It has also been tested that the discriminatory power of
the invariants still hold when a diffelgent set of independent
invariants is chosen, e.g., {I}—g" , % .77} The values of these
invariants for the experimental scenes and the distances
between the invariants are given in [3]. The distances have
also been computed using a set of invariants as those in

Table 2, but the first two invariants have been inversed [3].



626 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 6, JUNE 2001

(b)

(@)

Fig. 8. Views of the (a) Red Fort, Delhi and (b) Birbal’'s Tomb, Agra.

Fig. 9. Conics fitted to repeated domes of monuments.

Inspite of the values of the first two invariants being very
small compared to the third, the distances are able to
distinguish the configurations.

6.2 Application

As an application, the experiments are carried out on
images of monuments with multidome architecture. The
aim is to be able to extract features which are similar
between images of the same monument. This application
indicates the applicability of the approach to content-based
image retrieval.

Our framework is applied to monuments in Figs. 6, 7,
and 8, which have minarets and domes which are
translationally repeated. These monuments can be char-
acterized by the repeated domes. Each of these domes can
be modeled as a quadric. Due to the distance from which

(b)

the photograph has to be taken in order to get the two
domes in view, the projective distortion is not too much. As
a result, the outline conics seen in the image do not vary
much, which aid in recognition. Occlusion is not a major
issue because the size of the structures makes it difficult for
one of the domes to be completely covered. Also, these
monuments have parapets around the domes, or engrav-
ings on the dome, which can aid in the choice of
distinguished points. The perfect symmetry of these domes
allow a wide range of views to be acceptable.

In each of the images of the monuments, the outline
conic was fitted to the domes. The fitted outline conics for
two of the monuments is shown in Fig. 9. The four points
chosen were two corners of the parapet, one point just
below the steeple, and the fourth point as the centre of the
fitted conic. As is evident from the choices, these points are
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TABLE 1
Values of Invariants of Experimental Scenes
Fig. No. Iﬁ: % 155
2 (a) | 4.9721e6 | 1.2101e6 | -1.3166¢3
2 (b) | 8.8897e6 | 2.5712e6 | -1.4952e3
3(a) | 3.927¢5 | -1.6973 | -2.1646e4
3(b) | 4.4671c5 | -6.2543¢c5 | -2.4266c4
4 (a) |5.6329¢7 | 1.3681cT | -7.2899¢3
4 (b) | 6.3996e7 | 1.5734c7 | -7.2382¢3
5(a) | 9.164207 | 2.2680c7 | -3.1159c4
5(b) | 9.8416e7 | 2.2992¢7 | -3.3064e4
5(c) |5.2821c9 | 7.999c8 | -1.1556c4

always found on the domes in question. A quadric was
reconstructed with respect to each dome, and the invariants
were computed with each pair. This was first done for four
images of the Taj Mahal, (Fig. 6), then two images of the
Jama Masjid (Fig. 7), and one each of the Red Fort (Fig. 8a)
and Birbal’s house (Fig. 8b). The distances between these
invariants are shown in Table 3. Here, also the distances
have been relatively scaled in order to make their analysis
meaningful.

The values in Table 3 show that the distance between
invariants for Figs. 6a, 6b, 6c, and 6d are of the order 10°.
The distances of these from the invariants of Figs. 7a and 7b
and Figs. 8a and 8b are of the order 10°. Similarly, distances
between the invariants for the two images Figs. 7b and 7a is
0.2075, and the distances of Fig. 7b from Figs. 8a and 8b are
1.1969 and 1.243, respectively.

These distance values indicate the discriminatory ability
of the strategy with respect to features obtained from the
monuments. Hence, this invariant-based recognition strat-
egy can be used for indexing images of these type of
monuments.

6.3 Stability of the Invariant-Based Recognition
Strategy

The stability of the recognition strategy implicitly takes into
account the stability of the reconstruction scheme and the
stability of the invariants computed using the reconstructed
quadrics. It brings to fore two main issues:

o The ability of the strategy to handle the effect of
perturbation in the correspondences between
translated points and use of an alternate set of
correspondences for reconstruction.

e The ability of the strategy to discriminate and cluster
images of a configuration taken from different
views. A Principal Component Analysis-based fea-
ture extraction and classification scheme has been
used for studying this aspect of stability.

We now analyze both these issues in detail.

6.3.1 Stability: Correspondence Related Issues

We study the effect of perturbation in the correspondences
via a simulated experiment. We take a pair of quadrics and
their images, the outline conics. We perturb the position of
the corresponding points on the translated quadric, keeping
the points on the first quadric the same. The entire
reconstruction strategy is now applied to it and we compute
the invariants shown in Table 4. We find the distance
between the values obtained without perturbing the points

TABLE 2
Distances (Scaled by 10'3) between Objects in Terms of Invariants Values
Fig. No. 2 (a) 2 (b) 3 (a) 3 (b) 4 (a) 4 (b) 5 (a) 5 (b) 5 ()
2 (a) 0 1.7198 2.2878 2.3852 279.2983 369.4722 797.2611 920.6053 2.8486e6
2 (b) 1.7198 0 7.9712 8.1503 237.3878 320.9959 725.2342 843.1870 2.8442e6
3 (a) 2.2878 7.9712 0 0.0211 332.0669 429.8302 884.8581 1.0145e3 2.8536e6
3 (b) 2.3852 8.1503 0.0211 0 332.7461 430.6137 385.9759 1.0156e3 2.8536e6
4 (a) 279.2983 237.3878 332.0669 332.7461 0 6.3003 132.8032 185.7998 2.7926e€6
4 (b) 369.4722 320.9959 429.8302 430.6137 6.3003 0 81.2563 127.7382 2.7843e6
5 (a) 797.2611 725.2342 884.8581 385.9759 132.8032 81.2563 0 4.5975 2.7545e6
5 (b) 920.6053 843.1870 1.0145e3 1.0156e3 185.7998 127.7382 4.5975 0 2.7474e6
5 (¢) 2.8486€6 2.8442e6 2.8536€6 2.8536€6 2.792e6 2.7843e6 2.7545e6 2.7474e6 0
TABLE 3
Distances (Scaled by 10'7) between Invariants of Monuments
Fig. No. 6 (a) 6 (b) 6 (c) 6 (d) 7 (a) 7(b) 8 (a) 8 (b)

6 () 0 9.8278 | 20833 | 6.6732 | 275.7703 | 260.8493 | 297.1625 | 297.8935

6(b) | 9.8728 0 3.0299 | 61735 | 186.9058 | 174.7020 | 204.3098 | 204.9123

6(c) | 20833 | 3.0299 0 2.9869 | 230.3271 | 216.7116 | 249.8673 | 250.5372

6 (d) 6.6732 6.1735 2.9869 209.5282 | 196.5934 228.47 229.1075

7 (a) 275.7703 | 186.9058 | 230.3271 | 209.5282 0 0.2075 0.4127 0.4403

7(b) | 260.8493 | 174.7020 | 216.7116 | 196.5034 | 0.2075 0 11969 | 1.2437

8 (a) | 2071625 | 204.3008 | 249.8673 | 228.47 | 0.4127 | 1.1969 0 4.5045e-4

8(b) | 207.8035 | 201.9123 | 250.5372 | 229.1075 | 0.4403 | 1.2437 | 4.5045e- 0
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TABLE 4
Values of Invariants Computed by Introducing Perturbation in the Points on the Translated Quadratic
and Their Distance from the Invariants of the Unperturbed Configuration

Perturbation. % % % Distance
0 4423384.23 1058179.07 -1853.90 0
-3.77 1373846.98 289399.62 -1045.86 0.31
-1.41 2033349.98 472029.21 -1473.96 0.25
1.77 2118580.38 493546.10 -1437.05 0.24
0.33 2042958.21 472760.08 -1529.48 0.25
0.62 2671527.37 618490.52 -1457.79 0.18
1.27 2073973.62 482700.82 -1445.02 0.24
-0.89 2122799.81 494555.49 -1436.63 0.24
0.14 2072807.91 482411.47 -1445.36 0.24
1.84 1175540.12 263559.01 -1122.90 0.33
-0.28 1441219.56 327752.67 -1218.26 0.31
2.21 5722208.35 1273118.05 -1602.69 0.13
-2.68 1186659.72 8802.28 -1421.13 0.34
4.03 55816180.55 -4292103.83 -127012.01 5.17
6.71 2745352172.27 -52261095.58 -447094.31 274.14
3.88 48261562.80 297179.62 -876.32 4.38
5.87 1254875645.96 -184642525.59 -1662503.11 126.42

The distances have been scaled by 107 so that they can be analyzed relatively. The values have been rounded to two places after the decimal.

(@)

Fig. 10. Configurations with marked points for picking correspondences.

and those obtained by perturbing the points. The distances
have been scaled by the order of 107 to make the relative
comparison of distances meaningful. It can be seen that
small perturbations of two-three pixels can be handled, that
is, the distances from the unperturbed case is small. But, the
distance increases with the increase in displacement of the
pixels. This is realistic because a perturbation of five or
more pixels may cause the point to lie outside the outline
conic. Thus, the invariant values have been found to be
stable for small perturbations in points.

Also, it has been proved in Theorem 4.3 that the choice of
point correspondences is not crucial to the reconstruction-
based recognition strategy. We have experimentally verified
this for the scenes in Fig. 10 by taking different sets of
distinguished points. The values of the invariants are
shown in Table 5. Values have been found to be similar.
This indicates the stability of the quadric reconstruction and
the experimental validation that any four points in general
position can be chosen.

6.3.2 Principal Component Analysis

Use of trainable classifiers provide a mechanism to decide
upon class boundaries depending upon variations of the
invariant value over an example set [19]. Hence, we have
used principal component analysis for feature extraction, so
that class separability is maximized.

(b)

For principal component analysis, we take three config-
urations each containing a pair of translationally repeated
quadrics (Figs. 11a, 11b, 11¢, and 11d, 12a, 12b, 12¢, and 12d,
13a, 13b, 13c, and 13d). For each of these, we reconstruct the
pair of quadrics as explained in Section 4 and compute the
values of seven invariants

{1115 LI, LIy LI LI LI, L
22 LI LI I Ll I

for each of the images. These values form the vector of
invariants for each image. We do an eigenspace analysis of
these invariant vectors. We compute the covariance matrix
C of these vectors, the eigen values of the covariance matrix,
and their corresponding eigen vectors. The eigen values are
{1.9822e-13, 2.5216e-12, 2.8992e-9, 8.2652e-7, 2.5028e-5,
7.6463e-4, 0.0098}. Then, we obtain the projection of the
invariant vectors on to the space defined by the eigen
vectors corresponding to the three largest eigen values (as a
pair of quadrics has three independent invariants). We can
categorize these images (Figs. 11, 12, and 13) into three
classes on the basis of their projective equivalence:

e Class I: Figs. 11a, 11b, 11¢, and 11d,
e Class II: Figs. 12a, 12b, 12¢, and 12d,
e Class III: Figs. 13a, 13b, 13c, and 13d.



CHOUDHURY ET AL.: RECONSTRUCTION-BASED RECOGNITION OF SCENES WITH TRANSLATIONALLY REPEATED QUADRICS 629

TABLE 5
Effect of Change in Distinguished Points on the Invariants
Fig. No. | Distinguished points % 2}: 15;
10 (a) A, B,C, D 24716e-8 | 1.0025e-7 | -1.7372e4
AE C, D 3.1075¢-9 | 1.2624e-8 | -1.4107e4
A E,F,D 1.0617¢-8 | 4.3838¢-8 | -1.0216¢4
A,B,F,D 2.3925¢-8 | 9.7016e-8 | -8.3501e3
10 (b) A, B,C,D 4.952¢-8 | 1.9942¢-7 | -1.1122c4
E, F, G, H 1.68360-8 | 6.8391¢-7 | -9.9156¢3

Their separation is characterized using the Mahalanobis
distance

D(Y;, Class;) = (Y; = Y;)'C7H(Y; = Y)), (7)

where C; is the covariance matrix of class j and
D(Y;,Class;) denotes the distance of vector Y; from the
jth class. The Mahalanobis distance of the projected vectors
corresponding to the experimental scenes, from the three
identified classes are shown in Table 6, which indicate that
the classes are well separated.

We now consider two novel views (Figs. 14a and 14b) of
Fig. 12 and Fig. 13, respectively. The Mahalanobis distance

of these projected vectors of these images from the three
classes are given in Table 6. The distances from the classes
correctly classify the image Fig. 14a as belonging to Class II
and Fig. 14b to be that of the configuration corresponding to
Class III. The distance of the invariants computed for the
quadrics reconstructed using different sets of four points,
shown in Fig. 10b, on the projected feature space, from the
three classes, show (Table 6) that they have been correctly
classified as Class II.

The results establish that the invariants computed via the
reconstruction-based recognition strategy are such that we
are able to categorize these images correctly into classes,
despite variations in viewpoint, which is equivalent to
applying the same projective transformation to both the
quadrics keeping the camera fixed. They are also stable to
change in the set of point correspondences and perturbation
in points.

7 CoNCLUSIONS AND FUTURE WORK

In this paper, we have given a scheme for invariant-based
recognition for translationally repeated quadric configura-
tions via a reconstruction framework. A mathematical
framework for the reconstruction of translationally repeated
objects, in general, and translationally repeated quadrics in

Fig. 12. Views of Scene 2 for stability analysis.

(@) (b)

Fig. 13. Views of Scene 3 for stability analysis.

(©) (d)
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TABLE 6
Distances of Projected Image Vectors from Their Classes

View Class I Class II Class III
11 (a) 2.25 1.5916e6 5.2753e6
11 (b) 2.25 5.7758e6 | 1.6232e7
11 (c) 2.25 4.9613e6 1.517e7
11 (d) 2.25 5.8980e6 1.6876e7
12 (a) | 1.3188e3 2.25 69.2062
12 (b) 1.2623e3 2.25 1.7212e3
12 (c) 1.1992e3 2.25 192.1235
12 (d) 1.1575e3 2.25 266.1613
13 (a) 1.4983e3 15.1453 2.25
13 (b) 1.4213e3 88.2481 2.25
13 (¢) 1.4632e3 133.5598 2.25
13 (d) 1.4665e3 78.7997 2.25
14 (a) 1.1823e3 1.1774 221.3684
14 (b) 1.4855e3 14.8133 1.9313
10 (b) 1.3099e3 2.3942 77.9522

1.1897e3 1.0151 209.7732

1.1221e3 5.1938 348.7102

1.2121e3 0.3402 174.3711

particular, have been developed. Joint projective invariants
have been proposed for a general pair of proper quadrics.
These have been applied for the recognition of quadric
configurations from a single image. The reconstruction-
based recognition strategy is general and applicable to all
repeated objects for which invariants can be computed.

Experiments on real and synthetic images establish the
discriminatory power and the stability of these invariants as
well as the strategy. We have also considered the applica-
tion of this technique for recognition of real life objects like
historical monuments with multidome architecture. The
ability of these invariants in distinguishing images of
different historical monuments despite variations in their
views, based on their geometric similarity, indicates a
possible application of this measure for indexing images in
a digital library. For the reconstruction of quadrics, we need
the two outline conics and four point correspondences. The
strategy would fail in cases when the outline conics are
occluded (occlusion to some extent is permissible by
Bookstein’s algorithm [1]), or if it is not possible to pick
image point correspondences, they are not in general
position in the image or the points lie on the outline conic.
An alternate strategy to handle occlusion has been devel-
oped in [4] which takes into account the repetition
explicitly.

As an extension of this work, a general reconstruction
framework can be developed for affinely repeated objects.
The case of translationally repeated objects can then be
approached as a special case of that. Proposed approach can
also be adapted for analysis of scenes with multiple
repeated components.

APPENDIX

We will now establish a relationship between Hy and Hy

by the following theorem. This relationship has also been

proved by Shashua and Navab [22] and Luong and Vieville

[12]. We prove it with respect to our framework.

Theorem 7.1. Let P = K[R,, t,)| and P' = K’ [R), t!] be the two
cameras. Let II be the reference plane. Then, Hp =
Hy, + ey, where efy = et the normalized epipole, Hyy is
the homogmphy between the two image planes, with respect to
the plane T1, and  vf; _ is expressed in terms of the coordinates
of the plane 11 and the internal camera parameters.

Proof. As we want the expression of k in terms of actual
distances, we take the canonical decomposition of the
camera matrices in terms of the intrinsic and extrinsic
parameters in the form

P=K[R,t,), P =KR,t] (8)

Now,

m = PM = K[Ry ty| = K(Ro(X Y Z) + ).

Therefore,
K'm=R, XY Z) +t,. 9)
Similarly,
K -1 ~/ _

=R (XY 2) +1,. (10)

Eliminating (X Y Z)" between (9) and (10), we get
W = KR, R,'K~

By defining R/ R, '

Y+ K'(t), —
=Rand t/ —

R R 't,).
R R't, =T, we get

(1)

By using the form of the camera matrix in (8), we get H
=PP'=(K'R)(KR,) ' =KR,R,'K'=KRK"
K'(t,, — Rt,) =K'T.

m' = K'RK™'m+ K'T.

Also, € = —K'R| R 't, + K't! =
Substituting into (11), we get

Fig. 14. Additional views for stability analysis.
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~ ~ |~
m = H,m+¢€.

(12)
Let the normalized coordinates of the plane IT = (_l 6)’
where [ is a 3 x 1 vector.
For a point M lying on the plane I1, I!(K ~'m) = 6. This
gives

I'(K~'m)
5

Combining (13) and (12), we get m = (Hy + g%)ﬁz =
Hym (since M € II and Hym = m/). This gives

=1 (13)

ltK71 / )\c, ! ltK71
Hp=Hy +¢ =H,+ € L
0 [le’|] 6 (14)
Ao ||€|[IEE T
=Hy + e?vuﬁx (where l/ﬁN A 1 il | el lle ! ).

Therefore, we get the desired result Hy = Ho + e?vyﬁv.lj
Premultiplying by e}, on both sides of (14), we get

en(Hu — Hy) = el = lley|Pvy, = vy, -

Theorem 7.2. The following results hold true

1. €=p —Hyp

2. H.e=-¢.

3. Hye =~¢ for some vy € R, v#0.
Proof.

 p1
L. zi:[P/pf]( Plp
' —1,./
2. ngzp/Pfl[Pp](*Pl p):P/P’lp—

PP PPy =H.p—p =—¢ (from1)).
3. From Theorem 7.1, we have Hy = H,, + eQ\,VﬁN.
Therefore,

) =—P'Plp+p =p — Hup.

~ ~ ot~ o~ t o~
Hpe= Hye+ enVi € = —€ + v eey

(because vy € is a scalar)

e/ )\/ 7/{’—1 g
~ e _1 N ~
( e

-+ Vﬁwe‘—

¢ h 1+ "0,

e whnere = — - .
7 7 Mlle]

o

Now,/ from (14), vy, :M Using this, 1f; €=

MK*E# Ae||€'|] because ¢ does not lie on the

plane II. This implies that v # 0. O
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