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ABSTRACT 
Many techniques for associat ion rule mining  and  feature  se- 
lection require a sui table  metr ic  to  cap ture  the  dependencies 
among variables in a da t a  set. For example,  metr ics  such as 
support ,  confidence, lift, correlation,  and  collective s t reng th  
are often 'used to de te rmine  the  interest ingness  of associa- 
t ion pat terns .  However, many  such measures  provide con- 
flicting informat ion abou t  the  interest ingness  of a pa t t e rn ,  
and  the  best  metr ic  to  use for a given appl icat ion domain  is 
rarely known. In this  paper,  we present  an  overview of var- 
ious measures proposed in the  stat is t ics ,  machine  learning 
and da t a  mining l i terature.  We describe several key proper- 
ties one should examine in order to  select the  r ight  measure  
for a given appl icat ion domain.  A compara t ive  s tudy of 
these propert ies  is made  using twenty  one of the  exist ing 
measures.  We show t h a t  each measure  has  different proper- 
ties which make t hem useful for some appl ica t ion domains,  
bu t  not  for others.  We also present  two scenarios in which 
most  of the  exist ing measures  agree wi th  each other,  namely, 
suppor t -based  pruning  and  table  s tandard iza t ion .  Finally, 
we present  an  a lgor i thm to select a small  set  of tables  such 
t h a t  an  expert  can select a desirable measure  by looking at  
jus t  this  small  set of tables.  

Categories and Subject Descriptors 
H.2.8 [ D a t a b a s e  M a n a g e m e n t ] :  Da tabase  App l i ca t ions - -  
Data mining 

Keywords 
Interest ingness Measure,  Cont ingency tables,  Associat ions 

1. INTRODUCTION 
The  analysis of re la t ionships  among  variables is a funda- 

men ta l  task  at  the  hear t  of many  d a t a  min ing  problems. 
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For instance,  the  central  task  of associat ion rule mining  [2] 
is to  find sets of b inary  variables t h a t  co-occur toge ther  fre- 
quent ly  in a tr~msaction database ,  while the  goal of feature 
selection problems is to  identify groups of variables t h a t  are 
s t rongly correlated with  each other  or wi th  a specific t a rge t  
variable. Regardless of how the  relat ionships are defined, 
such analysis often requires a sui table  metr ic  to  cap ture  the  
dependencies among variables. For example,  metr ics  such as 
support ,  confidence, lift, correlat ion,  and  collective s t r eng th  
have been used extensively to evaluate  the  interest ingness  
of associat ion pa t t e rns  [9, 14, 1, 15, 11]. These  metr ics  are 
defined in t e rms  of the  frequency counts  t abu l a t ed  in a 2 × 2 
cont ingency table  as shown in Table 1. Unfor tunate ly ,  many  
such metr ics  provide conflicting informat ion  abou t  the  inter- 
est ingness of a pa t t e rn ,  and  the  best  metr ic  to  use for a given 
appl icat ion domain  is rarely known. 

T a b l e  1: 
a n d  B .  

A 2 x 2 c o n t i n g e n c y  t a b l e  for  v a r i a b l e s  A 

J B 
A I f l l  110 f l+  

I Iol foe fie+ 
I1+1 f+o iv 

T a b l e  2: E x a m p l e  o f  c o n t i n g e n c y  t a b l e s .  
Example f l l  flO f01 f00 

E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
EiO 

In this  paper,  we show t h a t  not  all measures  are equally 
good at  cap tur ing  the  dependencies  among variables. Fur- 
thermore ,  there  is no measure  t h a t  is consis tent ly  be t t e r  
t h a n  others  in all appl icat ion domains.  Th i s  is because each 
measure has i ts own selection bias t h a t  justifies the  rat io- 
nale for preferring a set of tables  over another .  To i l lus t ra te  
this, consider the  ten example cont ingency tables,  E1 - E l0 ,  
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Table  3: R a n k i n g s  o f  c o n t i n g e n c y  t a b l e s  u s i n g  v a r i o u s  in teres t ingness  measures .  
Example ¢ A c~ Q Y ~ M J G s c L V I I S  P S  F A V  S ~ K 

E1 
E2 

E5 
E6 
E7 
E8 
E9 

given in Table 2. We compute the association in each ex- 
ample by using several well-known measures such as the ¢~ 
coefficient 1, interest factor, mutual  information, J-Measure, 
etc. (A complete list and definitions of these metrics are 
given in Table 5.) Each example is then ranked according 
to its measure in decreasing order of magnitude, as shown 
in Table 3. The results of this table indicate that  different 
measures can lead to substantially different orderings of con- 
tingency tables. For example, E l 0  is ranked highest by the 
I measure, but  lowest according to the C-coefficient, while 
E3 is ranked lowest by the A V  measure but highest accord- 
ing to the I S  measure. Thus, selecting the right measure 
can be a tricky problem because one has to recognize the 
intrinsic properties of the existing measures. 

There are several properties that  need to be considered 
when we analyze a measure. Some of these properties are 
well-known to the da ta  mining community, while others, 
which are equally important ,  deserve more attention. One 
important  property is the sensitivity of a measure to row 
and column scaling operations. We illustrate this with the 
following classic example by Mosteller [12]: 

T a b l e  4: T h e  G r a d e - G e n d e r  e x a m p l e .  
Male Female Male Female 

High 2 3 5 High 4 [ 30 34 
Low 1 4 5 Low 2 40 42 

3 7 10 6 L 70 76 

(a) (b) 

The table above illustrates the relationship between the 
gender of a student and the grade obtained for a particular 
course. Table 4(b) is obtained by doubling the number of 
male students and multiplying the number of female stu- 
dents by a factor of 10. However, on average, the perfor- 
mance of male students for the particular course is no bet- 
ter than it was before, and the same applies to the female 
students. Mosteller concluded that  both tables are equiva- 
lent because the underlying association between gender and 
grade should be independent of the relative number of male 
and female students in the samples [12]. Yet, many intu- 
itively appealing measures, such as ¢, mutual information, 
gini index and cosine measure, are sensitive to scaling of 
rows and columns of the table. Although measures that  are 
invariant to this operation do exist, e.g., odds ratio~ they 
have other properties that  make them unsuitable for many 
applications. 

1The C-coefficient is analogous to Pearson's  correlation co- 
efficient for continuous variables 

Nevertheless, there are situations in which many of the 
existing measures become consistent with each other. First, 
the measures may become highly correlated when support- 
based pruning is used. Support-based pruning also tends 
to eliminate uncorrelated and poorly correlated patterns. 
Second, after standardizing the contingency tables to have 
uniform margins[12, 3], many of the well-known measures 
become equivalent to each other. 

If both situations do not hold, we can find the most appro- 
priate measure by comparing how well each measure agrees 
with the expectations of domain experts. This would require 
the domain experts to manually rank all the patterns or con- 
tingency tables extracted from the data. However, we show 
that  it is possible to select a small set of "well-separated" 
contingency tables such that  finding the most appropriate 
measure using this small set of tables is almost equivalent 
to finding the best measure using the entire data  set. 

The problem of evaluating objective measures used by 
data  mining algorithms has a t t racted considerable atten- 
tion in recent years [7, 6, 10]. For example, Kononenko et 
al. [10] have examined the use of different i m p u r i t y  f unc -  
t ions  for top-down inductive decision trees while Hilderman 
et al. [7, 6] have conducted extensive studies on the behav- 
ior of various divers i t y  measure s  for ranking data  summaries 
generated by at tr ibute-oriented generalization methods. 

The  specific contributions of this paper are: 

• We present an overview of various measures proposed 
in the statistics, machine learning and da ta  mining 
literature. 

• We describe several key properties one should examine 
in order to select the right measure for a given applica- 
tion domain. A comparative study of these properties 
is made using twenty one of the existing measures. 

• We present two scenarios in which most of the exist- 
ing measures agree with each other, namely, support- 
based pruning and table standardization. 

• We present an algorithm to select a small set of tables 
such that  an expert  can select a desirable measure by 
looking at just this small set of tables. 

2. PRELIMINARIES 
Let T ( D )  = ( t l , t 2 , . . . t n }  denotes the set of patterns, 

represented as contingency tables, derived from the data  
set D and P is the set of measures available to an analyst. 
Given an interestingness measure M E P,  we can compute 
the vector M ( T )  : { m l , m 2 , . . .  , iN}, which corresponds 
to the values of M for each contingency table that  belongs to 
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Table  5: I n t e r e s t i n g n e s s  M e a s u r e s  for  A s s o c i a t i o n  P a t t e r n s .  
Measure 

C-coefficient 

Goodman-Kruskal's (A) 

Odds ratio (c~) 

Yule's Q 

Yule's Y 

Kappa (~) 

Mutual Information (M) 

J-Measure (J) 

Gini index (G) 

Support (s) 
Confidence (c) 
Laplace (L) 

Conviction (V) 

Interest (I) 

cosine (IS) 
Piatetsky-Shapiro's ( PS) 
Certainty factor (F) 
Added Value (AV) 
Collective strength (S) 

Jaccard (¢) 
Klosgen (K) 

Formula 

• P(A)P(B)(1--P(A))(I-P(B)) 
max k P(Aj ,Bk)&~k max~ P(Aj ,B~)--maxj P(Aj) -max~P(Bk)  

2--maxj P(As)-maxh: P(Bk) 
P(A,B)P('~,'B) 
P(A,B)P('~,B) 
P(A, B)P ('A'B)-P(A ,__B')P(A', ]3) = --a--1 
P(A,B)P(AB)TP(A,B)P(A,B) a-l-1 

~/P(A,B)P~J+~P(A,~)P(~,B.) = ~7~" 
P(A,B)+P(A,B)--P(A)P(B)--P(A)P(B) 

1-P(A)P(B)-P(A)P(B) 
1 P(Ai'B ") E~Ej P(A~,Bj) o g ~ ,  ~ .  

min(-- ~ t  P(A.i) log P(Ai.),- ~.~j P(Bj) log P(Bj)) 

max (P(A, B ) l o g ( P p ~ )  + P(A'B) l o g ( - ~ ) ,  

P(A, B) log( -~-~)  + P(AB) log( Pp~A~ )) 

max (P(A)[P(BIA) 2 + P(B[A) 2] + P(~)[P(B[A) 2 + p(~[~)2] 
_p(B)2 _ p(~)2,  

P(B)[P(AIB) 2 + P(A[B) 2] + P(B)[P(A['B) 2 + P(~lB)  21 
_p(A)2 _ p(~)2) 

P(A, B) 
max(P(BIA), P(AIB)) 

/ NP(A,B)+i NP(A,B)+I  
max ( - - ~ - - ,  NP(B)+2 ) 

/ P A d  P(B)P('A)', 
maxi, P(AB) ' - - ~ - }  

~/P(A)P(B) 
P(A, B) - P(A)P(B) 

{ P(B]A)--P(B) P(A[B)--P(A) 
max ~ 1-P(B) ' 1--P(A) ) 
max(P(B[A) - P(B), P(AIB) - P(A)) 

P(A,B).-i-P(A'B) X 1--P(A)P(B)'-PI'A)P(B) 
P(A)P(B)+P(A)P(B) 1 - P ( A , B ) - P ( ~ )  

P(A,B) 
P(A)q-P(B)--P(A,B) 
~/P(A, B) max(P(BIA) - P(B), P(AIB) - P(A)) 

T(D). M(T) can also be transformed into a ranking vector 
OM(T) = { o l , o 2 , " "  ,ON}, whose components correspond 
to the rank order of each interestingness value, ml.  With  
this representation, the similarity between any two measures 
M1 and M2 can be evaluated by a similarity measure be- 
tween vectors OMi (T) and OM2 (T). If the values within 
two ranking vectors are unique, one can show that  Pearson's 
correlation, cosine measure and an inverse of the L2-norm 
are monotonically related. For simplicity, we choose one of 
them, Pearson's correlation, as our similarity measure. 

Definition I. [ S i m i l a r i t y  b e t w e e n  M e a s u r e s ]  Two mea- 
sures of association, M1 and M2, are similar to each other 
with respect to the da ta  set D if the correlation between 
OM1 (T) and OM2 (T) is greater than or equal to some posi- 
tive threshold t. 

3. PROPERTIES OF A MEASURE 
In this section, we describe several key properties of a mea- 

sure. While some of these properties have been extensively 
investigated in the data  mining li terature [13, 8], others are 
not that  well-known. A complete listing of the measures 
examined in this study is given in Table 5. 

3.1 Desired Properties of a Measure 
Piatetsky-Shapiro [13] has proposed three key properties 

a good measure M should satisfy: 

PI :  M = 0 if A and B are statistically independent; 

P2: M monotonically increases with P(A, B) when P(A) 
and P(B) remain the same; 

P3: M monotonically decreases with P(A) (or P(B)) when 
the rest of the parameters (P(A, B) and P(B) or P(A)) 
remain unchanged. 

These properties axe well-known and have been extended by 
many authors [8, 6]. Table 6 illustrates the extent to which 
each of the existing measure satisfies the above properties. 

3.2 Other Properties of a Measure 
There are other properties that  deserve further investiga- 

tion. These properties can be described using a matr ix  for- 
mulation. In this formulation, every 2 × 2 contingency table 
is represented as a contingency matrix, M = [fllfxo; folfoo] 
while every interestingness measure is a matr ix  operator,  O, 
that  maps the matr ix M into a scalar value, k, i.e., OM = k. 
For instance, t:he ¢ coefficient is equivalent to a normal- 
ized form of the determinant  operator, where Det(M) = 
f l l foo- fmf lo .  Thus, statistical independence is represented 
by a singular matr ix M whose determinant  is equal to zero. 
The underlying properties of a measure can be analyzed by 
performing various operations on the contingency tables as 
depicted in Figure 1. 
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T a b l e  6 :  P r o p e r t i e s  o f  i n t e r e s t i n g n e s s  m e a s u r e s .  N o t e  t h a t  n o n e  o f  h e  m e a s u r e s  s a t i s f i e s  a l l  t h e  p r o p e r t i e s .  
Symbol Measure  

~b ~b-coefiicient 
A Goodman-Kruska l ' s  
a odds ratio 
Q Yule's Q 
Y Yule's Y 

Cohen ' s  
M Mutua l  Informat ion 
J J -Measure  
G Gini index 
s Suppor t  
c Confidence 
L Laplace 
V Conviction 
I Interest  
IS Cosine 
~S Pia te tsky-Shapiro ' s  
~V Cer ta in ty  factor 

Added value 
S Collective s t reng th  

Jaccard 
K Klosgen's  

where: P i :  
P2: 
P3: 
O1: 
O2: 
O3: 
O3': 
04 :  
Yes* : 
No*: 
No**: 

Range P1 P2 P3 O1 [ 0 2  0 3  O3' [ 0 4  
- 1 . . . 0 . . . 1  Yes Yes Yes Yes No Yes Yes [ No 

0 . . .  1 Yes No No Yes No No* Yes No 
0. • • 1 • • • ~ Yes* Yes Yes Yes Yes Yes* Yes No 
- 1 .  • • 0. • • 1 Yes Yes Yes Yes Yes Yes Yes [ No 
- 1 • • • 0. - • 1 Yes Yes Yes Yes Yes Yes Yes No 
- 1 . .  • 0. •. 1 Yes Yes Yes Yes No No Yes No 

0 . . .  1 Yes Yes Yes No** No No* Yes No 
0 . . .  1 Yes No No No** No No No No 
0 . . .  1 Yes No No No** No No* Yes No 
0 - - .  1 No Yes No Yes No No No No 
0 . . .  1 No Yes No No** No No No Yes 
0 " -  1 No Yes No No** No No No No 

0.5- .  • 1 • • • c~ No Yes No No** No No Yes No 
0.  • • 1. • • c~ Yes* Yes Yes Yes No No No No 

0 . . -  P ~ , B ) . . .  1 No Yes Yes Yes No No No ' Yes 
- 0 . 2 5 . . .  0. • • 0.25 Yes Yes Yes Yes No Yes Yes No 

- 1 . . .  0 . . .  1 Yes Yes Yes No** No No Yes No 
- 0 . 5 .  • • 0 . . -  1 Yes Yes Yes No** No No No No 

0.  • • 1 . .  - c~ No Yes Yes Yes No Yes* Yes No 
0 . . -  1 No Yes Yes Yes No No No Yes 

( ~ a  - 1)1/212 - ~ -  ~3  ] ' ' '  0 . . .  373 Yes Yes Yes No** No No No No 

O ( M )  = 0 if det(M) = O, i.e., whenever A and B are s tat is t ical ly independent .  
O ( M 2 )  > O ( M i )  if M2  = M i +  [k - k; - k  k]. 
O ( M 2 )  < O ( M z )  if M 2  = Mz-+ [0 k; 0 - k] or M 2  = M z  + [0 0; k - k]. 
Proper ty  1: S ymmet ry  under  variable permuta t ion .  
Proper ty  2: Row and Column scaling invariance. 
Proper ty  3: A n t i s y m m e t r y  under  row or column permuta t ion .  
Proper ty  4: Inversion invariance. 
Proper ty  5: Null invariance. 
Yes if measure  is normalized. 
S y m m e t r y  under  row or column permutat ion.  
No unless the  measure  is symmetr ized  by taking m a x ( M ( A ,  B), M(B, A)). 

I ~  I p I q  J, ~,1 B I p I , I 
I r I s I V l  ~ I q I s I 

(a) Variable Permutation Operation 

~ t p ] q t r-----~ ] A ~k3k,ptk4k,ql 
I r I s I ~ Ik~k~rlLk=s] 

(b) Row & Cotumn Scaling Operation 

I Z [ r [ s [ ~ p q 
(C) Row & Column Permutation Operation 

r A , . . . . .   l'l'l'l [ Z I , I , I ~ q p 
(d) Inversio¢l Operation 

Z I r I s I Z r [s÷k  
(a) Null Addition Operation 

F i g u r e  1 :  O p e r a t i o n s  o n  a c o n t i n g e n c y  t a b l e .  

Property 1. [ S y m m e t r y  U n d e r  V a r i a b l e  P e r m u t a t i o n ]  
A m e a s u r e  O is s y m m e t r i c  u n d e r  va r i ab le  p e r m u t a t i o n  (Fig-  
u re  l ( a ) ) ,  A ~-~ B ,  if O ( M  T) = O ( M )  for all c o n t i n g e n c y  
m a t r i c e s  M .  O t he rwi se ,  it  is ca l led  a n  a s y m m e t r i c  m e a s u r e .  

T h e  a s y m m e t r i c  m e a s u r e s  i n v e s t i g a t e d  in th i s  s t u d y  inc lude  
conf idence ,  laplace,  J - M e a s u r e ,  conv ic t ion ,  a d d e d  value,  gini  

index ,  m u t u a l  i n f o r m a t i o n ,  a n d  K l o s g e n ' s  e v a l u a t i o n  func-  
t ion.  E x a m p l e s  o f  s y m m e t r i c  m e a s u r e s  a re  C-coefficient,  co- 
s ine  (IS),  i n t e r e s t  f ac to r  ( I )  a n d  o d d s  r a t io  (c~). In  prac-  
t ice,  a s y m m e t r i c  m e a s u r e s  a re  u s e d  for i m p l i c a t i o n  rules ,  
w h e r e  t h e r e  is a need  to  d i s t i n g u i s h  b e t w e e n  t h e  s t r e n g t h  o f  
t h e  ru le  A ~ B f r o m  B ~ A. Since eve ry  c o n t i n g e n c y  
m a t r i x  p r o d u c e s  two  va lues  w h e n  we a p p l y  a n  a s y m m e t r i c  
m e a s u r e ,  we u se  t h e  m a x i m u m  of  t h e s e  two  va lues  to  be  i ts  
overal l  va lue  w h e n  we c o m p a r e  t h e  p r o p e r t i e s  o f  s y m m e t r i c  
a n d  a s y m m e t r i c  m e a s u r e s .  

Property 2. [ R o w / C o l u m n  S c a l i n g  I n v a r i a n c e ]  Let  
R = C = [kz 0; 0 k2] be  a 2 x 2 s q u a r e  m a t r i x ,  w h e r e  kz a n d  
k2 a re  pos i t i ve  c o n s t a n t s .  T h e  p r o d u c t  R x M c o r r e s p o n d s  
to  sca l ing  t h e  f irst  row o f  m a t r i x  M by  kl a n d  t h e  second  
row by  ks,  whi le  t h e  p r o d u c t  M x C c o r r e s p o n d s  to  sca l ing  
t h e  first  c o l u m n  o f  M by  kz a n d  t h e  s econd  c o l u m n  by  ks  
(F igu re  l ( b ) ) .  A m e a s u r e  O is i nva r i an t  u n d e r  row a n d  
c o l u m n  sca l ing  if O ( R M )  = O ( M )  a n d  O ( M C )  = O ( M )  
for all  c o n t i n g e n c y  m a t r i c e s ,  M .  

O d d s  r a t io  ( a )  a l ong  w i t h  Yu le ' s  Q a n d  Y coeff icients  a re  t h e  
o n l y  m e a s u r e s  in T a b l e  6 t h a t  a re  i n v a r i a n t  u n d e r  t h e  row 
a n d  c o l u m n  sca l ing  o p e r a t i o n s .  T h i s  p r o p e r t y  is usefu l  for 
d a t a  se t s  c o n t a i n i n g  n o m i n a l  va r i ab l e s  s u c h  as  Mos te l l e r ' s  
t r a d e - g e n d e r  e x a m p l e  in Sec t ion  1. 

Property 3. [ A n t i s y m m e t r y  U n d e r  R o w / C o l u m n  P e r -  
m u t a t i o n ]  Le t  S = [0 1; 1 0] be  a 2 x 2 p e r m u t a t i o n  
m a t r i x .  A n o r m a l i z e d  2 m e a s u r e  O is a n t i s y m m e t r i c  u n d e r  

~A m e a s u r e  is n o r m a l i z e d  if i t s  va lue  r a n g e s  b e t w e e n  -1 a n d  
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the row permutation operation if O(SM) = - O ( M ) ,  and 
antisymmetric under the column permutation operation if 
O(MS) = - O ( M )  for all contingency matrices M (Figure 
1(c)) 

The C-coefficient, PS, Q and Y are examples of antisymmet- 
tic measures under the row and column permutation opera- 
tions while mutual information and gini index are examples 
of symmetric measures. Asymmetric measures under this 
operation include support, confidence, IS  and interest fac- 
tor. Measures that are symmetric under the row and column 
permutation operations do not distinguish between positive 
and negative correlations of a table. One should be careful 
when using them to evaluate the interestingness of a pattern. 

Property 4. [Inversion Invar iance]  Let S = [01; 10] 
be a 2 × 2 permutation matrix. A measure O is invariant 
under the inversion operation (Figure l(d)) if O(SMS) = 
O(M) for all contingency matrices M. 

Inversion is a special case of the row/column permuta- 
tion where both rows and columns are swapped simultane- 
ously. We can think of the inversion operation as flipping 
the O's (absence) to become l ' s  (presence), and vice-versa. 
This property allows us to distinguish between symmetric 
binary measures, which are invariant under the inversion 
operation, from asymmetric binary measures. Examples of 
symmetric binary measures include ¢, odds ratio, a and col- 
lective strength, while the examples for asymmetric binary 
measures include I, IS, PS and Jaccard measure. 

A B C D E F 

11 IH 11 
(a) (b) (c) 

F i g u r e  2: Comparison  be tween  the  C-coefficients for 3 
pairs of  vectors.  The  ¢ values for (a), (b) and (c) are 
-0.1667, -0.1667 and 0.1667, respectively.  

We illustrate the importance of inversion invariance with 
an example depicted in Figure 2. In this figure, each column 
vector is a vector of transactions for a particular item. It is 
intuitively clear that the first pair of vectors, A and B, have 
very little association between them. The second pair of 
vectors, C and D, are inverted versions of vectors A and B. 
Despite the fact that both C and D co-occur together more 
frequently, their ¢ coefficient are still the same as before. 
In fact, it is smaller than the C-coefficient of the third pair 
of vectors, E and F,  for which E = C and F = B. This 
example demonstrates the drawback of using C-coefficient 
and other symmetric binary measures for applications that 
require unequal treatments of the binary values of a variable, 
such as market basket analysis [5]. 

Other matrix operations, such as matrix addition, can also 
be applied to a contingency matrix. For example, the second 

+1. An unnormalized measure U that ranges between 0 and 
+oo can be normalized via transformation functions such as 
U - 1  t a n  - 1  [ o ~ U )  
U + i  o r  ¢ / 2  • 

property, P2, proposed by Piatetsky-Shapiro is equivalent 
to adding the matrix M with [k - k; - k  k], while the 
third property, P3, is equivalent to adding [0 k; 0 - k] or 
[00; k - k ] t o N i .  

Property 5. [Null Invar iance]  A binary measure of 
association is null-invariant if O(M + C) = O(M) where 
C = [00; 0 k] and k is a positive constant. 

For binary variables, this operation corresponds to adding 
more records that do not contain the two variables under 
consideration, as shown in Figure l(e). Some of the null- 
invariant measures include IS  (cosine) and the Jaccard simi- 
larity measure, ¢. This property is useful for domains having 
sparse data sets, where co-presence of items is more impor- 
tant than co-absence. 

3.3 Summary 
The discussion in this section suggests that there is no 

measure that is better than others in all application do- 
mains. This is because different measures have different in- 
trinsic properties, some of which may be desirable for certain 
applications but not for others. Thus, in order to find the 
right measure, one must match the desired properties of an 
application against the properties of the existing measures. 

4. EFFECT OF SUPPORT-BASED PRUNING 
Support is a widely-used measure in association rule min- 

ing because it represents the statistical significance of a pat- 
tern. Due to its anti-monotonicity property, the support 
measure has been used extensively to develop efficient al- 
gorithms for mining such patterns. We now describe two 
additional consequences of using the support measure. 

4.1 Equivalence of Measures under Support 
Constraints 

First, we show that many of the measures are highly cor- 
related with each other under certain support constraints. 
To illustrate this, we randomly generated a synthetic data 
set that contains 10,000 contingency tables and ranked the 
tables according to all the available measures. Using Defi- 
nition 1, we can compute the similarity between every pair 
of measures for the synthetic data set. Figure 3 depicts 
the pair-wise similarity when various support bounds are 
imposed. The dark cells indicate that the similarity, i.e., 
correlation, between the two measures is greater than 0.85 
while the lighter cells indicate otherwise. We have re-ordered 
the similarity matrix using the reverse Cuthill-McKee algo- 
rithm [4] so that the darker cells are moved as close as possi- 
ble to the main diagonal. Our results show that by imposing 
a tighter bound on the support of the patterns, many of the 
measures become highly correlated with each other. This 
is shown by the growing region of dark cells as the support 
bounds are tightened. In fact, the majority of the pair-wise 
correlation between measures is greater them 0.85 when the 
support values axe between 0.5% and 30% (the bottom-right 
figure), which is a quite reasonable range of support values 
for many practical domains. 

4.2 Elimination of Poorly Correlated Tables 
using Support-based Pruning 

Many association rule algorithms allow an analyst to spec- 
ify a minimum support threshold to prune out the low- 
support patterns. Since the choice of minimum support 
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All Pairs 0.010 <= support <= 1.0 0.050 <= support <= 1.0 

1 2 3 4 5 6 7 8 9 1011121314151817181~1 

0.005 <= support <= 0.5 

I 2 3 4 5 6 7 8 91G1112131415161"~18192021 

O.OLO <= suppor t  <=  0.5 

1 2 3 4 5 6 7 8 9101112131415161718192G~1 

0.050 <= support <= 0.5 

1 2 3 4 5 8 7 8 9101112131415161TI81~1 

0.005 <= support <= 0,3 

1 2 3 4 5 6 7 8 9101112131415161718192021 

O.OLO <= support <- 0.3 

1 2 3 4 5 8 7 8 91011121314151617181@2(~1 

0.050 <= support <= 0.3 

1 2 3 4 5 6 7 8 9 101112131415181718192CI21 1 2 3 4 5 6 7 8 910111213141,5161TI8'1~21 1 2 3 4 5 6 7 8 910111213141516'ITI81g2(~21 

F i g u r e  3: S i m i l a r i t y  b e t w e e n  m e a s u r e s  a t  v a r i o u s  r a n g e s  o f  s u p p o r t  v a l u e s .  N o t e  t h a t  t h e  c o l u m n  l a b e l s  a r e  t h e  s a m e  
a s  t h e  r o w  l a b e l s .  

threshold is somewhat arbitrary, we need to ensure that such 
a pruning strategy will not inadvertently remove many of 
the highly correlated patterns. To study the effect of sup- 
port pruning, we examine the distribution of ¢ values for the 
contingency tables that are removed when various support 
thresholds are imposed on the synthetic data set. We use the 
c-coefficient because it resembles Pearson's correlation coef- 
ficient for continuous variables. For this analysis, we impose 
the minimum support threshold on f l l  and the maximum 
support threshold on both fl+ and f+l. Without support 
constraints, the C-coefficients for the entire tables are nor- 
rnally distributed around ~b = 0, as depicted in the top-left 
graph of figures 4(a) and (b). When a maximum support 
threshold is imposed, the ¢ values of the eliminated tables 
follow a bell-shaped distribution, as shown in figure 4(a). 
In other words, having a maximum support threshold will 
eliminate uncorrelated, positively correlated and negatively 
correlated tables at equal proportions. 

On the other hand, if a lower bound of support is specified 
(Figure 4(b)), most of the contingency tables removed are 
either uncorrelated (¢ = 0) or negatively correlated (¢ < 
0). This result makes sense because whenever a contingency 
table has a low support, the values of at least one of fl0, 
f01 or f00 must be relatively high to compensate for the low 
frequency count in ffll. This would correspond to poorly or 
negatively correlated contingency tables. The result is also 
consistent with the property P2 which states that a measure 
should increase as the support count increases. 

Thus, support pruning is a viable technique as long as only 
positively correlated tables are of interest to the data min- 
ing application. One such situation arises in market basket 

analysis where such a pruning strategy is used extensively. 

5. TABLE STANDARDIZATION 
Standardization is a widely-used technique in statistics, 

political science and social science studies to harldle contin- 
gency tables that have non-uniform marginals. Mosteller 
suggested that standardization is needed to get a better 
idea of the underlying association between variables [12], 
by transforming an existing table so that their marginals 
are equal, i . e . ,  f ~ +  = f ~ +  = f ~ - i  = f~-o = N / 2  (see Ta,- 
ble 7). A standardized table is useful because it provides a 
visual depiction of how the joint distribution of two variables 
would look like aster eliminating biases due to non-uniform 
marginals. 

Table  7: Table  S t a n d a r d i z a t i o n .  

! B B B B 
A fll  flo ! ' ~ ' -  A .f{l ff~o 

/oi foo 'f o+ ----~ ~ /31 .fg*o 
f+l f+O T f~l f~o 

(a) 

I~+ 

N 

B B 
A x N [ 2  - x , 

N/2 NT~ 
(b) 

Mosteller also gave the following iterative procedure, which 
is called the Iterative Proportional Fitting algorithm or IPF [3], 
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(a) Distribution of C-coefficient for contingency 
tables that  are removed by applying a maximum 
support threshold. 

(b) Distribution of C-coefficient for contingency 
tables that  are removed by applying a minimum 
support threshold.. 

F i g u r e  4: E f f ec t  o f  S u p p o r t  P r u n i n g  on  C o n t i n g e n c y  t a b l e s .  

for adjusting the cell frequencies of a table until the desired 
margins, ff~+ and ff_~j, are obtained: 

R o w  s c a l i n g :  ) = × (1)  

Column scaling : fi(; +1) = ,f!~)~3 x f -~ 
f ( k )  (2) +j 

An example of the IPF  standardization procedure is demon- 
strated in Figure 5. 

k = O  

!5  10 25 
3 5  4 0  7 5  ] 

50 50 100 I 

Odginal T a b l e  

k = 3  

2 8  2 2  I 5 0  

22 28 1 50  I 
50 50 pOOl 

l 
k = 4  

2 8  2 2  5 0  I 
2 2  2 8  5 0  

5 0  SO 1 0 0 1  

k = l  

3 0 .  . 2 ° 5 0  
2 3  2 7  5 0  

t s3  , 47  I~001 

1 
k = 2  

1 28 2.1 1 2 o l  
2 2  2 9  J 5 0  
5 0  5 0  1 1 0 0  

k = 5  

28 22 1 5 o l  
2 2  2 8  I 5 0  

50 ' 50  '1 lOO 
Standardized 

Table  

F i g u r e  5: Example  of  I P F  s tandard iza t ion .  

Interestingly, the consequence of doing standardization 
goes beyond ensuring uniform margins in a contingency ta- 
ble. More importantly, if we apply different measures from 
Table 5 on the standardized, positively-correlated tables, 
their rankings become identical. To the best of our knowl- 
edge, this fact has not been observed by anyone else before. 
As an illustration, Table 8 shows the results of ranking the 

standardized contingency tables for each example given in 
Table 3. Observe that  the rankings are identical for all the 
measures. This observation can be explained in the following 
way. After standardization, the contingency matr ix  has the 
following form [x y; y x], where x = ff~l a n d  y = N / 2  - x .  
The rankings are the same because many measures of as- 
sociation (specifically, all 21 considered in this paper) are 
monotonically increasing functions of x when applied to the 
standardized, positively-correlated tables. We illustrate this 
with the following example. 

E x a m p l e  1. The tit-coefficient of a standardized table is: 

x 2 - ( N / 2  - x) 2 4x 
q~ . . . .  1 (3) 

(N/2)  2 N 

For a fixed N,  ¢ is a monotonically increasing function of 
x. Similarly, we can show that  other measures such as o~, I ,  
I S ,  P S ,  etc. ,  are also monotonically increasing functions of 
of x. The only exceptions to this are ~, gini index, mutual  
information, J-measure,  and Klosgen's K,  which are con- 
vex functions of x. Nevertheless, these measures are mono- 
tonically increa~ing when we consider only the values of x 
between N / 4  a n d  N / 2 ,  which correspond to non-negatively 
correlated tables. Since the examples given in Table 3 are 
positively-correlated, all 21 measures given in this paper pro- 
duce identical ordering for their  standardized tables. 

Note that  since each iterative step in IPF  corresponds to 
either a row or column scaling operation, odds ratio is pre- 
served throughout the transformation (Table 6). In other 
words, the final rankings on the standardized tables for any 
measure are consistent with the rankings produced by odds 
ratio on the original tables. For this reason, a casual ob- 
server may think that  odds ratio is perhaps the best mea- 
sure to use. This is not  true because there are other ways 
to standardize a contingency table. To illustrate other  stan- 
dardization schemes, we first show how to obtain the exact 
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T a b l e  S: Rankings  of  c o n t i n g e n c y  tables  af ter  I P F  s ta n d a r d i z a t i o n .  
Example q5 A ~ Q Y ,¢ M J G s c L V I I S  P S  F A V  S ~ K 

E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 

solutions for f ~ s  using a direct approach. If we fix the stan- 
dardized table to have equal margins, this forces the f ~ s  to 
satisfy the following equations: 

1;1 . . . .  = / d o ;  110=f01 ;  f l x + f ~ 0 = N / 2  (4) 

Since there are only three equations in (4), we have the 
freedom of choosing a fourth equation that  will provide a 
unique solution to the table standardization problem. In 
Mosteller 's approach, the fourth equation is used to ensure 
that  the odds ratio of the original table is the same as the 
odds ratio of the standardized table. This leads to the fol- 
lowing conservation equation: 

f H f o o  = f~'t/d*o 
fmfol fx*of~x (5) 

After combining equations 4 and 5, the following solutions 
are obtained: 

. N ~ 0  
f l t  = f~o = 2(vf-~-7~-_F ' X / ~ " l " )  (6) 

f;o = f~l = N v f f ~ - f ~  
2(v07?1~ + J?7;-~7) (7) 

The above analysis suggests the possibility of using other 
standardization schemes for preserving measures besides the 
odds ratio. For example, the fourth equation could be cho- 
sen to preserve the invariance of I S  (cosine measure). This 
would lead to the following conservation equation: 

f l i  = f;1 (8) 

~ ( f l ,  -F flo)(f11 -F fox) ~/(f;1 --b fl*o)(ftx -F f~l) 

whose solutions are: 

f~l  = fo*o = N f H  (9) 
2 v / ( f l t  + f l o ) ( f l l  + fOX) 

Y;o = f~x = N ~(f~x + f lo ) ( f~  + fo~) - fix (10) 
2 V/(f l l  "4- fxo)(fxx + fol)  

Thus, each standardization scheme is closely tied to a spe- 
cific invariant measure. If IPF  standardization is natural  for 
a given application, then odds ratio is the right measure to 
use. In other applications, a standardization scheme that  
preserves some other measure may be more appropriate. 

6. M E A S U R E  S E L E C T I O N  B A S E D  O N  R A N K -  

I N G S  B Y  E X P E R T S  
Although the preceding sections describe two scenarios in 

which many of the measures become consistent with each 

other, such scenarios may not hold for all application do- 
mains. For example, support-based pruning may not be use* 
ful for domains containing nominal variables, while in other 
cases, one may not know the exact standardization scheme 
to follow. For such applications, an alternative approach is 
needed to find the best measure. 

In this section, we describe a novel approach for finding 
the right measure based on the relative rankings provided by 
domain experts. Ideally, we would like the experts to rank 
all the contingency tables derived from the data. This would 
allow us to identify the most appropriate measure, consistent 
with the expectations of the experts. Since manual ordering 
of the contingency tables can be quite a laborious task, it 
is more desirable to provide a smaller set of contingency 
tables to the experts  for ranking. We investigate two table 
selection algorithms in this paper: 

• RANDOM: randomly select k out  of the overall N ta- 
bles and present them to the experts. 

• DISJOINT:  select k tables that  are "furthest" apart  
according to their average rankings and would produce 
the largest amount  of ranking conflicts, i.e., large stan- 
dard deviation in their ranking vector (see Table 9). A 
detailed explmmtion of this algorithm is given in [16]. 

T a b l e  9: The  D I S J O I N T  algor i thm.  
Input:  T: a set of N contingency tables, 

P: measures of association, 
k: the sample size, 
p: oversampling parameter 

Output :  Z: a set of k contingency tables. 

1. T '  ~-- randomly select p x k tables from T. 
2. For each contingency table t E T' ,  

2a. VMi E P, compute the rankings OMi(t) .  
2b. Compute mean and standard deviation of rankings: 

~(t) = ~ O M ~ ( t ) / I P I  
,~(t) = ~C~(OM, ( t )  - - # ( t ) ) 2 / ( I P I -  t) 

3. Z = { tm} a n d T  = T - { tm},  where tm = argmax ta ( t )  
4. For each ( t i , t j )  E T '  

4a. VMk E P ,  Ak ( t i ,  t j )  = OM~(ti)  -- OMk( t j )  
4b. tu(ti,tj) = E ~  Ak( t i ,  t i ) / lP[  
4c. a ( t i , t j )  = X[~k(Ak( t i , t j )  --Iz(t~, t j))z/(pPl-  1) 
4d. d(t~,t3) = # ( t l , t j )  + a ( t l , t j )  

5. while IZI < k 
3a. Find t E T'  that maximizes ~ i  d(t, t j )  Vtj  e Z 
3b. Z = Z U { t }  a n d T ' = T ' -  (tf 

The DISJOINT algorithm can be quite expensive because 
we need to compute the distance between all N×(N--D pairs 2 
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of tables. To avoid this problem, we introduce an oversam- 
pling parameter, p, where 1 < p << N/k, so that instead 
of sampling from the entire N tables, we select the k ta- 
bles from a sub-population that contains only k x p tables. 
This reduces the complexity of the algorithm significantly 

kpx(kp-z) distance computations. to 2 

All Contingency Tables 

~ select k 
tables 

~ 7  Rank tables according 
to vadous measures 

Subset of Cont ingency 
Tables 

r 

TI '  ~ Preaent~To 

E x p ~ ' ~  

• Rank tables according 
to various measures 

Sv  

Compute similadty 
between different 

m e ~ u r e s  

Compu te  slmtiadty 
between different 

measures 

l I 
F i g u r e  6: S a m p l i n g  c o n t i n g e n c y  tables .  

To evaluate the effectiveness of our table selection algo- 
rithms, we use the approach shown in Figure 6. First, each 
contingency table is ranked according to the available mea- 
sures. The similarity between various measures are then 
computed using Pearson's correlation. A good table selec- 
tion scheme should minimize the difference between the sim- 
ilarity matrix computed from the samples, Ss, with the sim- 
ilarity matrix computed from the entire set of contingency 
tables, ST. The following distance function is used to deter- 
mine the difference between two similarity matrices: 

D(S~,ST) =ma~xlST(i,j)--Ss(i,j)[ (11) 
$,3 

We have conducted our experiments using the data sets 
shown in Table 10. For each data set, we randomly sample 
100,000 pairs of binary variables a as our initial set of contin- 
gency tables. We then apply the RANDOM and DISJOINT 
table selection algorithms on each data set and compare the 
distance function D at various sample sizes k. For each 
value of k, we repeat the procedure 20 times and compute 
the average distance D. Figure 7 shows the relationships 
between the average distance D and sample size k for the 
re0 data set. As expected, our results indicate that the 
distance function D decreases with increasing sample size, 
mainly because the larger the sample size, the more similar 
it is to the entire data set. Furthermore, the DISJOINT 
algorithm does a substantially better job than random sam- 
pling in terms of choosing the right tables to be presented to 
the domain experts. This is because it tends to select tables 

3Only the frequent variables are considered, i.e., those 
with support greater than a nser-specified minimum sup- 
port threshold. 
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F i g u r e  7: A v e r a g e  d i s tance  b e t w e e n  s imi lar i ty  m a t r i x  
c o m p u t e d  from the  sa mp l e s  (Ss)  and the  s imi lar i ty  ma-  
tr ix  c o m p u t e d  from the  ent ire  set  o f  c o n t i n g e n c y  tab les  
(ST) for the  re0 da ta  set .  

that are furthest apart in terms of their relative rankings 
and tables that create a huge amount of ranking conflicts. 
Even at k = 20, there is little difference (D < 0.15) between 
the similarity matrices Ss and ST. 

Table  10: :Data se t s  used  in our experiments.  
L._N_~_.~......~J.._De.scriptio.....___n Number of Variables 
~ ~ t e r ~ ~  2886 

LA-Times articles 31472 
Retail data 14462 
Stock market data 976 
Web data 6664 
Survey data 59 

We complement our evaluation above by showing that the 
ordering of measures produced by the DISJOINT algorithm 
on even a small sample of 20 tables is quite consistent with 
the ordering of measures if the entire tables are ranked by 
the domain experts. To do this, we assume that the rankings 
provided by the experts is identical to the rankings produced 
by one of the measures, say, the C-coefficient. Next, we re- 
move ¢ from the set of measures M considered by the DIS- 
JOINT algorithm and repeat the experiments above with 
k = 20 and p = 10. We compare the best measure selected 
by our algorithm against the best measure selected when the 
entire set of contingency tables is available. The results are 
depicted in Figure 8. In nearly all cases, the difference in 
the ranking of a measure between the two (all tables versus 
a sample of 20 tables) is 0 or 1. 

7. CONCLUSIONS 
In this paper, we have described several key properties one 

should consider before deciding what is the right measure to 
use for a given application domain. We show that there is no 
measure that is consistently better than others in all cases. 
Nevertheless, there are situations in which many of these 
measures are highly correlated with each other, e.g., when 
support-based pruning or table standardization are used. 
If both situations do not hold, one should select the best 
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ka2,5 : R a n k l n g e  w h e n  20  of  the  s e l e c t e d  t l lb leo , r e  ordered .  

Figure 8: Ordering of measures based on contingency 
tables selected by the DISJOINT algorithm. 

measure by matching the properties of the existing measures 
against the expectations of the domain experts. We have 
presented an algorithm to select a small set of tables such 
that  an expert can find the most appropriate measure by 
looking at just this small set of tables. 

This work can be extended to k-way contingency tables. 
However, understanding the underlying association within 
a k-way table requires techniques to decompose the overall 
association into partial associations between the constituent 
variables. Log-linear models provide a good alternative for 
doing this. More research is also needed to understand the 
association between variables of mixed data  types. A stan- 
dard way to do this is by transforming the variables into 
similar data types (e.g., by discretizing continuous variables 
or reducing the multiple categorical levels into binary levels) 
before applying the appropriate measure of association. 
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