IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002 515

Efficient Aggregation Algorithms for
Compressed Data Warehouses

Jianzhong Li, Member, IEEE Computer Society, and
Jaideep Srivastava, Senior Member, IEEE

Abstract—Aggregation and cube are important operations for online analytical processing (OLAP). Many efficient algorithms to
compute aggregation and cube for relational OLAP have been developed. Some work has been done on efficiently computing cube for
multidimensional data warehouses that store data sets in multidimensional arrays rather than in tables. However, to our knowledge,
there is nothing to date in the literature describing aggregation algorithms on compressed data warehouses for multidimensional
OLAP. This paper presents a set of aggregation algorithms on compressed data warehouses for multidimensional OLAP. These
algorithms operate directly on compressed data sets, which are compressed by the mapping-complete compression methods, without
the need to first decompress them. The algorithms have different performance behaviors as a function of the data set parameters,
sizes of outputs and main memory availability. The algorithms are described and the I/0 and CPU cost functions are presented in this
paper. A decision procedure to select the most efficient algorithm for a given aggregation request is also proposed. The analysis and
experimental results show that the algorithms have better performance on sparse data than the previous aggregation algorithms.

Index Terms—Data warehouse, multidimensional array, OLAP, aggregation, aggregation on compressed data warehouses.

1 INTRODUCTION

DECISION support systems are rapidly becoming a key to
gaining competitive advantage for businesses. Many
corporations are building decision-support databases,
called data warehouses, from operational databases. Users
of data warehouses typically carry out online analytical
processing (OLAP). Aggregation and cube [1] are the most
important operations of OLAP. The aggregation is used to
“collapse” away some dimensions to obtain a more concise
data set, namely, to classify items into groups and
determine one value per group. The cube computes
aggregations over all possible subsets of the specified
dimensions. This paper aims at developing efficient
aggregation algorithms for compressed data warehouses.

There are two kinds of data warehouses. One is for
relational OLAP, called ROLAP data warehouse (RDW for
short) [2], [3], [4]. The other one is for multidimensional
OLAP, called MOLAP data warehouse (MDW for short) [5],
[6], [71. RDWs are built on top of relational database
systems. MDWs are based on multidimensional database
systems. A MDW is a set of multidimensional data sets. In a
simple model, a multidimensional data set in a MDW consists
of dimensions and measures, represented by

R(D17D27 s 7D71;A117A127 .- '7Mk‘)7

o |. Liis with the Department of Computer Science and Engineering, Harbin
Institute of Technology, Harbin, 150001, Peoples Republic of China.
E-mail: lijz@banner.hl.cninfo.net.

o |. Srivastava is with the Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN 55455.

E-mail srivasta@cs.umn.edu.

Manuscript received 3 Aug. 1999; revised 19 July 2000 accepted 11 Dec. 2000;
posted to Digital Library 7 Sept. 2001.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 110352.

where D;s are dimensions and A/;s are measures. The data
structures in which RDWs and MDWs store data sets are
fundamentally different. RDWs use relational tables as their
data structure, that is, a “cell” in a logically multidimen-
sional space is represented as a tuple with some attributes
identifying the location of the cell in the multidimensional
space and other attributes containing the values of the
measures of the cell. By contrast, MDWs store their data sets
as multidimensional arrays. MDWs only store the values of
measures. The dimension values are treated as the indices
of the multidimensional arrays. The position of the measure
values within the multidimensional arrays can be calculated
by the dimension values.

Methods of computing aggregation and cube for RDWs
have been well-studied. A survey of the aggregation
algorithms in relational database systems were presented
in [11]. In [1], some rules of thumb were given for efficiently
computing the cube for RDWs. In [12] and [13], algorithms
were presented for deciding what group-bys to precompute
for RDWs. In [14] and [15], a Cubetree storage organization
for aggregation views of RDWs were proposed. In [16], fast
algorithms for computing the cube operation on RDWs
were given. These algorithms extend sort-based and hash-
based methods with several optimizations. Aggregation
precomputing is quite common in statistical databases [17].
Research in this area has considered various aspects of the
problem such as developing a model for aggregation
computations [18], indexing precomputed aggregations
[19], and incrementally maintaining them [20].

While much work has been done on how to efficiently
compute the aggregation and cube on RDWs, to the best of
our knowledge, there is only one published paper on how
to compute the cube on MDWs [10], and there is no
published work on how to compute the aggregation on
MDWs. MDWs present a different challenge in computing

1041-4347/02/$17.00 © 2002 |EEE

516 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002

the aggregation and cube. The main reason for this is the
fundamental difference in physical organization of their
data. MDWs normally have very large size and a high
degree of sparsity that have made data compression a very
important and successful tool in the management of MDWs.
There are several reasons for the need of data compression.
The first reason is that the multidimensional data sets in
MDWs created by the cross product of the dimensions can
be naturally sparse. For example, in an international trade
data set with dimensions exporting country, importing
country, materials, year and month, and measure amount,
only a small number of materials are exported from any
given country to other countries. The second reason for
compression is the need to compress the descriptors of the
multidimensional space. Suppose that a multidimensional
data set is put into a relational database system. The
dimensions organized in tabular form will create a
repetition of the values of each dimension. In fact, in the
extreme but often realistic case that the full cross product is
stored, the number of times that each value of a given
dimension repeats is equal to the product of the cardinal-
ities of the remaining dimensions. Other reasons for
compression of MDWs come from the properties of data
values. Often the data values are skewed in some data sets,
where there are a few large values and many small values.
In some data sets, data values are large but close to each
other. Also, sometimes certain values tend to appear
repeatedly.

While there are many data compression techniques
applicable for MDWs [8], [9], there is no work to date on
how to compute aggregation directly on compressed
MDWs, and there is only one published paper on how to
compute the cube on compressed arrays [10]. Efficiently
computing the aggregation and cube on compressed MDWs
is a serious challenge since most large MDWs may be
compressed for storage.

The goal of this paper is to develop efficient algorithms
to compute aggregation on compressed MDWs. A set of
aggregation algorithms on very large compressed MDWs is
proposed in the paper. These algorithms operate directly on
compressed data sets without the need to first decompress
them and, therefore, are efficient for sparse data ware-
houses. The algorithms have different performance beha-
vior as a function of data set parameters, sizes of outputs
and main memory availability. The algorithms are de-
scribed and analyzed with respect to the I/O and CPU costs.
A decision procedure to select the most efficient algorithm
for a given aggregation request is also proposed. The
analysis and experimental results show that the perfor-
mance of the proposed algorithms is much better than the
previous aggregation algorithms. The algorithms assume
that MDWs are compressed by mapping-complete methods.
Thus, they are only applicable to the mapping-complete
compression methods that are common used in compres-
sing MDWs. Now we are working on the aggregation
algorithms that are applicable to other kinds of compression
methods.

The rest of the paper is organized as follows: Some
backgrounds are introduced in Section 2. In Section 3, we
describe and analyze the proposed aggregation algorithms

on compressed MDWs. In Section 4, we provide the
decision procedure that selects the most appropriate
algorithm for a given aggregation request. The experimen-
tal performance results are presented in Section 5, and the
conclusions and future work are discussed in Section 6.

2 BACKGROUNDS

The method to compress MDWs must be introduced before
describing the aggregation algorithms for compressed
MDWs. To compress a MDW, each data set in the MDW
is first stored in a multidimensional array to remove the
need for storing the dimension values. Then, the array is
transformed into a linearized array by an array linearization
function. Finally, the linearized array is compressed by a
mapping-complete compression method.

2.1 Multidimensional Arrays

Let R(Dy, Do, ..., Dy; My, My, ..., M,,) be an n-dimensional
data set with n dimensions, Di,D,,...,D,, and m
measures, M, Ms, ..., M, where the cardinality of the ith
dimension is d; for 1 <4 <n. Using the multidimensional
array method to organize R, each of the m measures of R is
first stored in a separate array. Each dimension of R is used
to form a dimension of all the n-dimensional arrays. The
dimension values of R are not stored at all. They are the
indices of the arrays, which are used to determine the
position of the measure values in the arrays. Next, each of
the n-dimensional arrays is mapped into a linearized array by
an array linerization function. Assume that the values of the
ith dimension of R is encoded into 0,1,...,d; —1 for
1 <i<mn. The array linerization function for the multi-
dimensional arrays of R is

LINEAR(.’L’I,.CEQ, e ,J)T,) =
xidods ... d, +xods ... dy + ...+ 2p_1d, + Ty

In each of the m linearized arrays, the position of the
measure value with array indices (iy,%2,...,4,) is deter-
mined by LINEAR(iy,42, . .. ,in)-

Let [X] be the integer part of X. The reverse array
linerization function of the multidimensional array of R is

R-LINEAR(Y) = (y1,42,- - Un),
where,
Yn =Ymod dp,y; = [...[Y/dy]...]/dis1]mod d;
for2<i<n-1,yl =]...[[Y/dn]/dn-]...]/ds]/ds]. The ar-

ray indices, ¢y,42,..., and ¢, of the measure value in
position P in a linearized array are determined by
R — LINEAR(P).

2.2 Data Compression

It is desirable to develop data compression techniques so
that the data can be accessed in their compressed form and
operations can be performed directly on the compressed
data. Such techniques usually provide two mappings [8].
One is forward mappingIt computes the location in the
compressed data set given a position in the original data set.
The other one is backward mapping. It computes the position
in the original data set given a location in the compressed
data set. A compression method is called mapping-complete if

LI AND SRIVASTAVA: EFFICIENT AGGREGATION ALGORITHMS FOR COMPRESSED DATA WAREHOUSES 517

LE: viva 000000000vsvsvsvsve00vsvev,000
HF: 2 9 7o 014

PF: vyvava vy vs va vz Vy Vo Vg

Fig. 1. An example data set compressed by header compression
method.

it provides both forward mapping and backward mapping.
Mapping-complete compression methods are often used
methods for multidimensional databases and MDWs. Many
compression techniques are mapping-complete, such as
header compression [21], BAP compression [23], and chunk-
offset compression [10].

The algorithms proposed in this paper are applicable to
all the MDWs that are compressed by any mapping-
complete compression method. To make the description of
the algorithms more concrete, we assume that data sets in
MDWs have been stored in linearized arrays, each of which
has been compressed using the header compression method
[21]. The header compression method is used to suppress
sequences of missing data codes, called constants, in
linearized arrays by counts. It makes use of a header that
is a vector of counts. The odd-positioned counts are for the
unsuppressed sequences, and the even positioned counts
are for suppressed sequences. Each count contains the
cumulative number of values of one type at the point at
which a series of that type switches to a series of the other.
The counts reflect accumulation from the beginning of the
linearized array to the switch points. In addition to the
header file, the output of the compression method consists
of a file of compressed data items, called the physical file.
The original linearized array, which is not stored, is called
the logical file. Fig. 1 shows an example. In the figure, LF is
the logical file, Os are the suppressed constants, vs are the
unsuppressed values, HF is the header and PF is the
physical file. The details of the header compression method
can be found in [21].

3 AGGREGATION ALGORITHMS

In the rest of the paper, without loss of generality, we
assume that each data set has only one measure. Let
R(D1,Ds,...,D,; M) be a multidimensional data set. A
dimension order of R, denoted by D;, D;, ... D; , is an order in
which the measure values of R are stored in a linearized
array by the array linearization function with D;; as the jth
dimension. Different dimension orders leads to different
orders of the measure values in the linearized array. In the
following discussion, we assume that R is stored initially in
the order D1 D,...D,. The input of an aggregation algo-
rithm includes a data set R(Dy, Ds,...,D,; M), a group-by
dimension set {Ay,As,..., Ay} C{Dy,Ds,...,D,} and an
aggregation function F. The output of the algorithm is a
data set S(A;, Ag, ..., Ay; F(M)), where the values of F(M)
are computed from the measure values of R using F'. In the
rest of the paper, we will use the following symbols for the
relevant parameters:

e d;: the cardinality of the dimension D; of R.

e N:the number of data items in the compressed array
of R.

e N,: the number of data items in the header of R.

ABCD|M BCAD|M

11112 11112

11123 11123

11213
1122312113

Transposition

12113 12123

11213

12124 12213

\7/
]
ole
o | f

21113 21113

21213 21124

S{B.CsumiM)

22124 21224

Aggregation

22215 22215

2222|4 22224

R(AB.C.D:M) R{BC.ADM)

Fig. 2. Aggregation procedure of G-Aggregation.

e N,: the number of data items in the compressed
array of S.

e N,;: the number of data items in the header of S.

e B:the number of data items of one memory buffer or
one disk block.

3.1 Algorithm G-Aggregation

3.1.1 Description

G-Aggregation is a “general” algorithm in the sense that it
can be used in all situations. This algorithm performs an
aggregation in two phases. Phase one, called transposition
phase, transposes the dimension order of the input multi-
dimensional data set R into a favorable dimension order so
that the aggregation can be easily computed. For example,
let R(A, B,C, D; M) be a 4D data set stored in a linearized
4D array with dimension order ABCD. Assume that B, C'is
the group-by dimension set. The dimension order BCAD
and BCDA are favorable dimension orders. In phase two,
called aggregation phase, the algorithm computes the aggre-
gation by one scan of the transposed R. Fig. 2 illustrates the
algorithm. For expository purposes, we use the relational
form in Fig. 2. In reality, the algorithm works directly on the
compressed array of R.

The transposition phase assumes that W buffers are
available. Data in the compressed array (physical file) is
read into the buffers as much as possible. For each data
item in a buffer, the following is done: 1) backward
mapping is performed to obtain the logical position in the
logical file, 2) the dimension values of the item are
recovered using the reverse array linearization function,
and 3) a new logical position of the item in the transposed
space is computed using the array linearization function.
The new logical position, called a “tag,” is stored with the
data item in the buffer. An internal sort is performed on
each of these buffers in the increasing order of the tags. The
sorted data items in these buffers are next merge-sorted
into a single run and written to disk along with the tags.
This process is repeated for the rest of the blocks in the
physical file of R. The runs generated are next merged in
the increasing order of the tags using W buffers. A new
header file is constructed for the transposed and com-
pressed array in the final pass of the merge sequence. Also,
the tags associated with the data items are discarded in this
pass. The file produced containing the (shuffled) data items
is the transposed, compressed, and linearized array of R,
denoted by T'A. The aggregation phase scans T'A once, and

518 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002

aggregates the measure values for each combined values of
the group-by dimensions one by one.

G-Aggregation can be improved. To transpose the
compressed array of R, G-Aggregation reads, writes and
processes the run files (of the same size as that of the
original compressed file) [logy [%]] times in the transposi-
tion phase. To perform the final aggregation, another scan
of the transposed array, the last run file, of R is needed. In
each of the two phases, the original and transposed header
files are accessed once. If the aggregation is performed as
early as possible, the size of the run files will be reduced
and the performance of the algorithm will be increase
dramatically. To improve G-Aggregation, we perform
aggregation and transposition at the same time. With such
“early” aggregation, run files will be smaller than the
original file, and the cost for creating and reading the
transposed header file is deleted.

The improved G-Aggregation assumes that IV + 2 buffers,
each of size B, are available. One buffer is used for input and
another for output. W buffers are used as aggregate and
merge buffers, denoted by buffer[j] for 1< j<W. Let
R(D1,Ds,...,D,; M) be the operand, and Ay, As,..., A; C
D1, Ds, ..., D, be the group-by dimension set. The improved
G-Aggregation also consists of two phases. The first phase
generates the sorted runs of R in the increasing order of the
values of A1 A, ... A;. Every value v in each run is a local
aggregation result of a subset of R with an identification
tuple of the group-by dimension values, (a1, as,...,a;), as
its tag. To generate a run, the algorithm reads as many
blocks of the compressed array of R as possible, sorts them
in the increasing order of the values of A; A, ... Ay, locally
aggregates them and fills the W buffers with the locally
aggregated results. For each buffer(j], the algorithm reads
an unprocessed block of the compressed array of R into the
input buffer. For each data item v in the input buffer the
following is done: 1) backward mapping is performed to
obtain the logical position in the logical file, 2) the
dimension values {z1,z,...,2z,} of v are recovered using
the reverse array linearization function, and 3) the values of
the group-by dimensions A;, A, ..., A (called a "tag") are
selected from z1,zs,...,2, and then stored with v in the
input buffer. An internal sort is performed on the data items
in the input buffer in the increasing order of the tags. The
sorted data items, each of which is in the form (v, tag) in the
input buffer, are next locally aggregated with respect to
their tags and stored to buffer[j]. The process is repeated
until bu ffer[j] is full. When all the W bulffers are full, all the
data items in the W buffers are aggregated and merged
with respect to their tags again, and written to disk to form
a sorted run. The whole process is repeated until all runs
are generated.

In the second phase, the sorted runs generated in phase
one are aggregated and merged using W buffers. A new
header file is constructed for the compressed array in the
final pass of the aggregation and merge sequence, and the
tags associated with the data items are discarded. The final
compressed file produced is the compressed array of the
aggregation result. Fig. 3 describes the main steps of the
algorithm.

The improved G-Aggregation algorithm is described
below. The input of the algorithm includes the compressed

Fig. 3. Main steps of the improved G-Aggregation.

array RPF, stored in dimension order D\D,...D,, of
R(Dy,Ds,...,D,; M), the header file RHF of RPF, the
group-by dimension set

{A17A27"'aAk} g {DI;D27H'7D7L}7

and the aggregation function F'. The output of the algorithm
are the compressed array SPF of S(Ai, As,..., Ay F(M))

and the header file SHF of SPF.

Algorithm G-Aggregation
/* Phase one */
While RPF is not empty Do
BuildNextRun();
End While
/* Phase two */
While number of runs in RUN is greater than 1
Do /* RUN is the set of runs formed in phase one */
RUN’=empty set;
While more unprocessed runs in RUN Do
Use the W buffers to merge and aggregate
the next W (or less) runs from RUN into
a single run r;
Add r to RUN’; /* the final aggregate and
merge results are stored to SPF */
End While
RUN= RUN’;
End While
Discard the logical position of each data, compute header
counts and write to new header file SHF.
BuildNextRun()
AllBuffersFull=False;
While RPF is not empty and AllBuffersFull =False Do
Read next block from RPF into buffer-in;
For each value v in buffer-in DO
ComputeAggregationDimensionValue(v);
End For
Sort buffer-in in the increasing order of tags;
Find minimun j from 1 to W, such that buffer[j]
can take the contents of buffer-in
If such j is found Then
locally aggregate the data items with the same
tag in buffer-in using F, copy the result to buffer|j];
Else AllBuffersFull=True;

End If
End While
Aggregate and merge the W buffers
buffer [1],...... ,buf fer[W] in order of A; ... A;

LI AND SRIVASTAVA: EFFICIENT AGGREGATION ALGORITHMS FOR COMPRESSED DATA WAREHOUSES 519

into a single run, write to SPF.
ComputeAggregationDimensionValue(v)
Look up v’s logical position using backward mapping
function and header file RHF
compute the dimension values of v using reverse array
linearization function and dimension order
D, D,,, store to D;
select the values {aq,..
{A4,..., A} from D;
store (a; ...a;) with v to buffer-in as the tag of v.

.,ay} of the group dimensions

3.1.2 Analysis of Cost

In the rest of the paper, the I/O cost of an algorithm is
represented by the number of disk block accesses required by
the algorithm. Because all the basic CPU operations can be
executed in constant time, each of the basic CPU operations,
i.e., addition, subtraction, multiplication, comparison, divi-
sion, and data swap in memory, are called computation. The
CPU cost is represented by the number of computations
executed by the algorithm.

In the first phase, [N/B] + ([No/B] — 1) + [N,/ B] disk
block accesses are needed to read the original compressed
array of R, read the original header file and write the sorted
runs to disk (the last block is kept in memory for use in the
second phase), where N, is the number of data items in all
the runs generated in this phase. It is obvious that Ny < N.

In the second phase, logy, S passes of aggregation and
merge are needed, where S is the number of runs formed in
phase one. Let IV; be the number of the output data items of
the ith pass of aggregation and merge for 1 <i <logy S,
where Ny, S = N, is the number of data items in the
compressed array of the final aggregation result. A
buffering scheme is used so that in the odd (even) passes,
disk block reading is done from the last (first) block to the
first (last) block. One block can be saved from reading and
writing by keeping the first or last block in memory for use
in the subsequent pass. In the last pass, we need to build
and write the result header file. Thus,

[logyy S1-1

[N/Bl+ ([No/Bl =1)+ > 2([Ni/B] = 1)+ [Nu/B]
i=1

disk block accesses are required in this phase. In summary,
the I/O cost of G-Aggregation is

I0cost(G-Aggregation) = [N/B] + [N,/ B]
+ |—NT‘/B-| + |—N7'}L/B-‘
[logy, S1-1

+ Y 2([Ni/B]-1).
=0
From the algorithm, N, < Ny <N and N, < N; < N; — L.
The average value of NN is

(N-N,+1)(N+N,) N+N,
2(N-N,+1) 2

The average value of N; is

(Niz1 — N, + 1)(Ni21 + N,)

Nifl +Nr
2(N;_1 — N, + 1) N 2 '

Ni_1+N,
2

Solving the recursive equation N; = t, we have

N; <5 (N, 4+ N) + N,. Thus, on the average,

[logy S1-1 [logy S1—-1 N

> 2A[N/Bl-1< 2§i§2

i=0 i=0

[logy S1—-1
1 N+N, N, N+N, N,
- 4 — < 2 1 ./7 S — .
Zi:o (2Z+1 B +B)— (5+ losw 1B)

Since S < [47|, the average value of IOcost(G-Aggrega-
tion) is

AIOcost(G — Aggregation) =
o1/ + T

+ [N:/B] + [Nya/B]

(555])

Now, we analyze the CPU cost of G-Aggregation. Let IV,
be the same as above for 0 < ¢ < logy, S. In the first phase,
for each value in the compressed array of R, we need to
perform a backward mapping and a reverse array linear-
ization. Since the algorithm reads the compressed array of R
from the beginning to the end, the header file only needs to
be scanned one time from the beginning to the end to
perform all the backward mappings. Thus, a backward
mapping for each data item requires one computation. A

reverse array linearization operation requires 2(n —1)
divisions and subtractions. Thus, 2N (n — 1) + N computa-
tions are needed for the backward mapping and reverse
array linearization for all values in the compressed array of
R. N — N, computations are needed for the local aggrega-
tions in this phase. There are also [N/B] blocks, each with
size B, to sort. To sort a block with size B requires Blog, B
computations. Thus, [N/B]Blog, B computations are re-
quired to sort the [IN/B] blocks. The output, N, data items,
of the first phase is generated by merging W buffers. In this
way, generating an output data item requires at most
W computations. Therefore, the total number of CPU
operations for the first phase is

N
2N(n—1)+ N+ N — Ny + {E-‘BloggBJrNoW:
N
2Nn — Ny + bw Blog, B+ NoW.

In the second phase, the algorithm performs
logy, S iterations. The ith iteration involves the aggregat-
ing and merging of [25] runs into [;%] and output N;
data items. In the ith iteration, N;_; — N, aggregations are
needed. The output, NV; data items, of the ith iteration is
generated by merging W buffers. Each data item requires at
most W computations. In the final iteration, the N,
computations are needed to compute the result header
counts. Therefore, the number of computations required by

the second phase is

520 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002

[log,, S1 [logyy 51
> ((Nig=N)+NW)+ N, =N+ Y NW.

=1 i=1
In summary, the CPU cost of the algorithm G-Aggregation is
CPUcost(G-Aggregation) =
2Nn — Ny + {%ﬂ Blog, B+ NoW + Ny+
[logw S1

N
> NW =2Nn+ H Blog, B +
i=1

[logy ST

Z N,W.

i=0
Since Ni< 541 (N, + N) + N, on the average and S < |47,

ﬂogw S-‘
Z NW <W
i=0
DOgu' SW
N+ N,
(% + Nr) < (N + 2N, + [logy, S1N,)
=0

N
W< (N + 2N, + N, [logw ’VW“ —‘) w

on the average. Thus, the average value of
CPUcost(G-Aggregation)
is
ACPUcost(G-Aggregation) =

N
O(2Nn + {E—‘ Blog, B

(2w fona [2])

3.2 Algorithm M-Aggregation

This algorithm is superior to G-Aggregation in case that the
aggregation result fits into memory. M-Aggregation com-
putes aggregation by only one scan of the compressed array
of the operand data set R. It reads blocks of the compressed
array of R one by one. For each data item v in the
compressed array of R, the following is done: 1) backward
mapping is performed to obtain vs logical position; 2) the
dimension values of v, (x1, 2, ...,2q), are recovered by the
reverse array linearization function from the logical position
of v, and the values (aj,as,...,a;) of the group-by
dimensions are selected from (z1,xs,...,z4); 3) if there is
a w that is identified by (a1, as, ..., a;) in the output buffer,
aggregate v to w using aggregation function, otherwise
insert v with (ai,as,...,a;) as a tag into the output buffer
using hash method. Finally, the algorithm builds the new
header file and writes the output buffer to the result file
with discarding of the tags. M-Aggregation is described as
follows: The input of the algorithm includes the compressed
array RPF, stored in dimension order D;D,...D,, of
R(D1,Ds,...,D,; M), the header file RHF of RPF, the
group-by dimension set

{A17A2a .. "Ak’} g {DlaD27 .. '7-D’7L}7

and the aggregation function F'. The output of the algorithm
are the compressed array SPF of S(Ai, As,..., Ay F(M))
and the header file SHF of SPF.

Algorithm M-Aggregation
For ¢=1TO [N/B] Do [*size of buffer-in is B */
Read the ith block of RPF into buffer-in;
For each value v in buffer-in Do
ComputeAggregationDimensionValue(v);
/* this function is in G-Aggregation and result is
(a1 ...a;) */
If there is no w in buffer-out whose tag is
(a1...a;) /* the If-Then-Else is implemented
by hash method */
Then insert v with tag (a; ...a;) in buffer-out in
the order A; ... A;;
Else aggregation v to w in buffer-out using F;
End For
End For
Write buffer-out to SPF, discard the tags, and build new
header file SHF.

M-Aggregation requires one scan of the original com-
pressed array of R, and a writing of the resulting file. Also,
the reading of the original header file and writing of the
new header file are needed. Hence, the total I/O cost is

IOcost(M-Aggregation) =
[N/B| + [N;/B] + [Non/B] + [N,/ B].

The CPU cost of M-Aggregation is the cost of, for each
data item in the compressed array of R, performing a
backward mapping, a reverse array linearization, a hashing
computation, an aggregation or memory operation (move
data to output buffer), and the cost for computing the result
header counts. As discussed in Section 3.1.2, a backward
mapping for each data item requires only one computation.
All the backward mappings for all data items in the
compressed array of R require N computations. All the
reverse array linearizations for all data items require
2N(n — 1) computations. The If-Then-Else sentence in the
algorithm needs to be executed N times, each requires a
hash computation. Computing the result header counts
requires N, computations. The algorithm requires NV — N,
aggregation and NN, memory operations also. Thus, CPU
cost of the algorithm is at most

CPUcost(M-Aggregation) =
N+2N(n—1)+hN+N—-N,+ N, + N, =
9Nn + Nh + N,,

where h is the number of computations needed by a
hashing computation.

3.3 Algorithm Prefix-Aggregation

This algorithm takes advantage of the situation where the
group-by dimension set contains a prefix of the dimension
order D1 D, ... D, of theoperand dataset R(Dy, ..., D,; M).It
performs aggregation in main memory by one scan of the
compressed array of R. It requires a main memory buffer
large enough to hold each portion of the resulting compressed
array for each “point” in the subspace composed by the
prefix.

In the rest of the paper,

LI AND SRIVASTAVA: EFFICIENT AGGREGATION ALGORITHMS FOR COMPRESSED DATA WAREHOUSES 521

A

A DM

2 1 2
M) R(A,1,2,D;M)

e el o

1
1
2
(a,

R(A,1,1

A DM A DM

113 11 |4
2 2 |4 2 2|6

R(A,2,1,D;M)

R(A,2,2,D;M)
Fig. 4. Sample subsets of R(A, B,C, D; M).

R(Dlv‘"7Dk7a‘k’+1a"’aak+paDk+p+1a"‘aDn;M)

represents a subset of R(Dy, ..
values on {Dj,1, ..
the subsets,

., Dp; M) whose dimension
., Dyyp} are {ag, . .., apyp. +. For example,

R(A,1,1,D; M), R(A,1,2, D; M), R(A, 2,1, D; M)

and R(A,2,2,D; M), of R(A, B,C, D; M) in Fig. 5 are shown
in Fig. 4.

We use an example to illustrate the idea of the algorithm.
Assume that data set R has four dimensions A, B,C, and D,
and is stored in a compressed array in dimension order
ABCD. Let us consider the aggregation with group-by
dimension set {4, B, D} that contains a prefix, AB, of the
dimension order of R. Fig. 5 shows the idea of the
algorithm. For each “point” (a,b) in the subspace, (4, B),
of R, namely, (1,1), (1,2), (2,1), or (2,2), the algorithm
performs the aggregation on R(a,b,C, D; M) with D as the
group-by dimension and appends to the result file. The new
header counts is computed at the same time. This is the
partial result of the aggregation under this fixed “point”
(a,b). All partial results are concatenated to form the final
aggregation result. The reason is that the subspace (A, B) is
stepped through in the same order as the original R, i.e., the
rightmost index is varying the fastest. Prefix-Aggregation is
described as follows: The input of the algorithm includes
the compressed array RPF, stored in dimension order
DyDs...D,, of R(Dy1,Ds,...,D,; M), the header file RHF
of RPF, the group-by dimension set

{A1,A9,..., A} C{D1,Ds,...,D,},

and the aggregation function F'. Please note that 4,4, ... 4,
is a prefix of

DD, .. ~D'mp < kv A[Hrl =

DP+(7'17 A[H—Q = D[J+jz? ceey Ak = Dp+j1,»7

and 1 < j; < j2 < < ji. The output of the algorithm are
the compressed array SPF of S(A;, As, ..., Ay; F(M)) and
the header file SHF of SPF.

Algorithm Prefix-Aggregation
For each point (a1, as, ..., ap) in subspace (4;, As, ...
in increasing order Do
For each block, BLOCK, of
R(al ceey Gy Dp+1> DerQ, ey Dm Af) Do
Read BLOCK to buffer-in;
For each value v in buffer-in Do
ComputeAggregationDimensionValue(v); /*
this function is in G-Aggregation and its output

+Ap)

¢ D
T 1

SUM (H)

T
1
11
1

NNEEE

[YRNY PRI PO

e B

Blo|e|w]e o

E

o

B
T
1
1
1
2
2
2
2
RUA,B,C, LM

Fig. 5. Aggregation procedure of Prefix-Aggregation.

is (a1 . .ak) >('/
If there is no w in buffer-out whose tag is (a1 . ..az)
Then append v with tag (a; ...ay) to buffer-out /*
automatically in order of A, ... Ay */
Else aggregate v to w in buffer-out using F;
End If
End For
End For
Write the buffer-out to SPF with discarding of the “tags,”
and calculate related header counts and write to new
header file SHF.
End For.
Prefix-Aggregation requires the reading of the original
compressed array of R, writing of the resulting file, reading
of the original header file and writing of the new header

file. Hence, the total I/O cost is

IOcost(Prefix-Aggregation) =
[N/B] +[N:/B] + [Non/B] + [N/ B].

The CPU cost of Prefix-Aggregation is the cost of
performing, for each data item in the compressed array of
R, a backward mapping, a reverse array linearization, a
comparison, an aggregation or a memory operation (move
data to output buffer), and the cost of computing new
header counts. Thus, the CPU cost of Prefix-Aggregation is

at most

CPUcost(Prefix-Aggregation)
=N+2N(n—1)+ N+ N—-N,+ N, + N,
=N2n+1)+ N,.

3.4 Algorithm Infix-Aggregation

3.4.1 Description

This algorithm takes advantage of the situation where the
set of group-by dimensions is an infix of the dimension
order D1 D,...D, of the operand data set

R(Dy,Da,...,Dy; M).
Fig. 6 shows the idea of the algorithm by an example of an
aggregation with group-by dimension set C, D, which is a
infix of the dimension order ABCDE, on data set
R(A,B,C, D, E; M). To perform the aggregation, R is first
partitioned into four sorted runs,

R(1,1,C,D,E; M), R(1,2,C,D,E; M),
R(2,1,C,D,E; M), and R(2,2,C,D, E; M).

522 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002

BN
11 |2
11 s
as e e |[u| |, |,
11111 |2 |7 2L
111125 /v2 s
11121 |3 22 |4
11211 4| woleo u
11212 |5 |6y
11221 |4 L
12112 |3 /'1 3 =5 [somem
12111 |3 22 |4
12221 |4 2.2)3 11 26
12222 |3 <o = ® 12 6
21111 [2 21 18
21112 |s|®=2[ra]z 2 2 22
211z T : : ; S(C. D: M)
21211 |4
21212 |5 \2 B
21221 |4 218
221123 22 |4
22111 |3 2ulcp [x
22221 |4 |
12222 |3 NP2
113
RIA B CL DL E: MY 22 |4
2 2 |3

Fig. 6. Aggregation procedure of Infix-Aggregation.

Then, all the runs are projected onto (C,D) without
removing repeated values. Finally, the projected runs are
aggregated and merged to generate the aggregation result.

In general, let {D;y1, Dito,..., Dy} be the group-by
dimensions of an aggregation on R(D1, Ds,...,Dy; M), n —
k>t>1,D be the size of the projection of R onto
(D1,Ds,...,D;y) and F be the aggregation function. It is
obvious that D;,1D; 5 ... D, is an infix of the dimension
order D1 D, ... D, of R. For each “point” (a1, ay,...,q;) in

(D1, Da, ..., D), thereis a sorted run,

R(al, .. .,at,Dt+1,Dt+27. . .7DW;M),

in the increasing order of the values of Dy Dito ... Dy
R(D1, Do, ..., D,; M) is the connection of D such runs. The
Infix-Aggregation algorithm computes the aggregation by
merging the D runs and performing aggregation at the
same time. The algorithm assumes W buffers, each with
size B, are available. If W > D,the algorithm requires only
one scan of the compressed array of R. This algorithm is
slower than Prefix-Aggregation when W < D but is not as
memory intensive as Prefix-Aggregation is. It requires
logy, D passes to merge the D runs, where each pass merges
W runs into one run. When the runs are merged, local
aggregations are performed at the same time. When all the
runs are merged into one run, the aggregation result is
generated. In the algorithm,

R(al,ag, .. .,at,l,Dt,DtH . -7Dt+k§ M)

represents the run for a “point” (ai,as,...,a;) in the
subspace (D1, Dy, ..., D;). The start position of

R(O,],(LQ, .. .,at7Dt+1,Dt+2, N .,Dn;]\/[)

in the compressed array of R can be computed by the
following procedure.

run-position(ay, as, . .., a;, Header)

Compute the logical position of (a;, as, ...
I, using array linearization function;

Flag = 0;

If] <wuy Thenp=1;

Else If up <! < c¢Then {p=cy+ 1;Flag=1;}

>at70a0a"'a0)/

Else Search for ! on the sums of adjacent counts of
Header to find 7 such that

U+ <l<cit+uore1+u <l<u +¢
Endif;

If Flag=0 and u; + ¢; <1 < ¢; +u;11 Then
{start position of R(ay,...,a;, Dit1,- ..., Dy; M)
isp=1—¢; exit; }

Else If Flag =0 Then p = u; + ¢; + 1; Endif;
Endif;

compute the logical position of p, L, using
backward mapping;

compute the dimension values

(b1,...,bt, by, ..., by) of L using reverse array
linearization function;
If (01,...,b) = (a1,...,a;) Then start position of

R(ay,...,at,Dis1,....,Dyp; M) is p;
Else R(a1,...,a:, Dy, ..., Dp; M) is empty;
End If;

End If.

Using the interpolation search [22], the I/O cost of the
procedure is at most 2log,log, N;, disk accesses and the
CPU cost is at most 21og, logy Nj, + 4(n — 1) where Ny, is the
number of data items in header file.

Infix-Aggregation starts by first computing the start
positions of the D runs in the compressed array of R. Then,
the algorithm performs the aggregation in logy, D itera-
tions. In the first iteration, it partitions the D runs into
[D/W] groups, each with W runs, and aggregates and
merges each group into one sorted run in the increasing
order of the values of DD, 5...Dyyy. For the jth group
(1 <j<[D/W]), the algorithm reads as many blocks of
each run in the jth group as possible, locally aggregates
them, and fills one of the W buffers with local
aggregation results. When all the W buffers are filled,
the local aggregation results in the W buffers are aggregated
and merged further and are appended to the jth new run.
The process is repeated until all the data items in all runs of
the jth group have been aggregated and merged into the jth
new run. After the first iteration, the D runs are merged into
[D/W] sorted runs. In the following iteration, the ith
iteration in general, the algorithm partitions the [2| runs
produced in the (i — 1)th iteration into ;| groups, each
with W runs. For the jth group

(s [8))

the blocks in the kth (1 <k < W) run of the group pass
through the kth buffer of the W buffers one by one.
During the passing of the data items through the
W bulffers, the algorithm merges and aggregates the data
in all the W buffers, and writes to the jth new run. In the
last iteration, the aggregation result and its header file are
generated. The Infix-Aggregation algorithm is described
as follows: The input of the algorithm includes the
compressed array RPF, stored in dimension order

LI AND SRIVASTAVA: EFFICIENT AGGREGATION ALGORITHMS FOR COMPRESSED DATA WAREHOUSES 523

G-Aggregation
e
/

7

e

_______ M-Aggregation

Infix-Aggregation—"

Prefix-Aggregation

Fig. 7. Partial order of the algorithms.

DyDs...D,, of R(Dy,Ds,...,D,; M), the header file RHF
of RPF, the group-by dimension set

{Dt+17Dt+27 .. '7Dt+k} g {D17D27' . '>Dn}7

the size D of the subspace (Di,Ds,...,D;), and the
aggregation function F. The output of the algorithm are
the compressed array SPE of S(A;, As, ..., Ay; F(M)) and
the header file SHF of SPF.

Algorithm Infix-Aggregation
For each (ay,...,a;) in (D4, ..., D;) in increasing order
Do /* compute the start positions of D runs */
run-position|ay, . .., a;] == run-position(a,...,a, RHF);
/* The first iteration */
For : =1 To [D/W] Do
Build-ith-Run(i); /* merge and aggregate runs
(=)W +1),(E—1)W+2),...,and(iW)
into the ith new run */
End For
[* The rest [logy D] — 1 iterations */
While number of runs in RUNis greater than 1 Do
/* RUN is the set of [D/W] runs formed in the
first iteration */
RUN’=empty set;
While more unprocessed runs in RUN Do
Use the W buffers to merge and aggregate the next
W (or less) runs from RUN into a single 7;
Add r to RUN’; /* the aggregate and merge results
is stored to SPF */
End While
RUN=RUN’;
End While
discard the tags of all data items, compute header counts
and write to new header file SHF.
Build-ith-Run(i)
While one of the ((: — 1)WW + 1)th, ((i — 1)W + 2)th, ...,
and (¢W)th runs is not empty Do
For j =1 To W Do
While the ((: — 1)W + j)th run is not empty and
buffer[j] is not full Do
Read next block from the ((i — 1)W + j)th run
into buffer-in;
For each value v in buffer-in Do
ComputeAggregationDimensionValue
(v); /* the same as in G-Aggregation
and result is (a; ...a;) */
End For
locally aggregate the data items with the same
tag (a1 ...as) in buffer-in using F, copy

3000

——G

2500 F

2000 F

1500

1000

Execution Time (Seconds)

500

—
T

0 %

1.0E+06 5.0E+06 1.0E+07 2.0E+07

Dataset Size (Data Entries)

Fig. 8. Comparisions of Hash, Sort, G, and Prefix with varying data set
size.

the result to buffer[j];
End While
End For
Aggregate and merge the W buffers
buffer[1],...... Jbuffer[W] in the order A; ... A;
into the ith new run, write to SPF;
End While.

3.4.2 Analysis of Cost

Similar to the cost analysis of G-Aggregation, the average I/
O cost of Infix-Aggregation is

AIOcost(Infix-Aggregation) =

N j\ﬂ' Ivﬁh
o(2Dtog gy + 2] [5] ¢ [,

]\CJL N]\9
{B-‘ +2(§+ ﬂngDW§>>a

and the average CPU cost of Infix-Aggregation is

ACPUcost(Infix-Aggregation) =
O(2Nn + 2Dlog, logy Nyj, +4D(n — 1)
+ (N + N, + N, [logy, D])W).

4 COMPARISON OF ALGORITHMS AND
SELECTION PROCEDURE

Let X and Y be two algorithms. We use X >4 Y to
represent the fact that the I/O and CPU cost of X is greater
than or equal to that of Y. Similarly X >cpy Y denotes that
the CPU costs of X are larger than that of Y. From the
functions of I/O and CPU costs of the algorithms proposed
in the paper, we have the following observations: Since all
the justifications are very simple, we ignore all of them.

Observation 1.
G-Aggregation> . Prefix-Aggregation
G-Aggregation> ., M-Aggregation,
M-Aggregation, > .. Prefix-Aggregation, and
Infix-Aggregation >, Prefix-Aggregation.

Observation 2.

524 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002

2700 F G
2400
2100 F
1800
1500 |
1200 |

900 |

600 I
300 F .
0 ——- . — —.——4?4——’7 i ,

1. 0E+06 5. OE+06 1. 0E+07 2. 0E+07

Infix
Sort
—H—Hash

Execution Time (Seconds)

Dataset Size(Data entries)

Fig. 9. Comparisons of Hash, Sort, G, and Infix with varying data set
size.

If Infix-Aggregation>cpy M-Aggregation, then
Infix-Aggregation >, M-Aggregation.

Observation 1 gives partial order of the algorithms in
terms of I/O and CPU cost. According to the partial order,
Prefix-Aggregation and M-Aggregation have better
performance. However, these two algorithms require more
memory. Furthermore, Prefix-Aggregation places special
requirements on the group-by dimensions.

Fig. 7 presents the order determined by Observation 1.
Each directed edge expresses a relation “>.. .” A dashed
edge between two algorithms represents no cost domina-
tion relation can be determined between the two.

Below, a general decision procedure is given that is
based on the partial order graph in Fig. 7. In the procedure,
a represents “the group-by dimension set contains a infix of
the dimension order of the operand,” 3 represents “the size
of the aggregation result is not greater than the size of the
available memory,” 7 represents “the group-by dimension
set contains a prefix of the dimension order of the operand,”
and 7 presents “available memory satisfies the requirement
of Prefix-Aggregation.” Also

A = Infix-Aggregation > G-Aggregation
B = Condition of Observation 2, and
C = Infix-Aggregation >, M-Aggregation.

Algorithm SELECT
If v A n then select Prefix-Aggregation;

-

(=1

53l
T

605 [[™°¢
M
505 F Sort
—¥—Hash

S w
o o
a o
T T

Execution Time (Seconds)
> 8 8 5
S 3
. :

[3)]

1. OE+06 5. OE+06 1. OE+07 2. 0E+07

Dataset Size(Data entries)

Fig. 10. Comparisons of Hash, Sort, G, and Infix with varying data set size.

160
——M
/——g ——Infix
120 Vs
£ 80
“ 40
T I

1. 0E+06 5. 0E+06 1.0E+07 2. OE+07

Dataset Size(Data entries)

Fig. 11. Comparisons of Hash, Sort, G, and Infix with varying data set size.

else

If 3A((B or C) or (not «)) then select
M-Aggregation;

else
If a A (not A) then select Infix-Aggregation;
else select G-Aggregation.
Endif

Endif

EndIf

The SELECT procedure is dependent on the I/O and
CPU costs of the aggregation algorithms. All the costs
required by the SELECT procedure can be determined
using the cost functions in Section 3.

5 EXPERIMENTAL RERULTS

To examine the performance of the aggregation algo-
rithms, in practice, all the four aggregation algorithms in
Section 3 have been implemented using C in the
Windows NT 4.0 environment on a Gateway 2000 E3200
PC computer with Pentium II 350 CPU, 256MB memory
and IBM-DATA-371010 disk system. The logical size of a
disk block is 4k bytes.

To compare with the aggregation algorithms in
relational database systems, we also implemented the
sort and hash-based aggregation algorithms [11]. The

165 5=y [
= Prefix /
o
g
S 125 /
A
5 /
E 8 F
—
o
=
5 45
Q
&
<8 P
5 7/ 1 1 1]
1. 0E+06 5. 0E+06 1.0E+07 2. 0E+07

Dataset Size(Data Entries)

Fig. 12. Comparisons of Hash, Sort, G, and Infix with varying data set size.

LI AND SRIVASTAVA: EFFICIENT AGGREGATION ALGORITHMS FOR COMPRESSED DATA WAREHOUSES 525

3150
2800
2450
2100 F
1750
1400
1050 F
700
350
0

Execution Time (Seconds)

1.0E+06 5.0E+06 1.0E+07 2.0E+07

Dataset Size(Data entries)

Fig. 13. Comparisons of Hash, Sort, G, and Infix with varying data set size.

experimental results show that our algorithms have much
better performance than the previous algorithms.

There are four factors that affect the performance of
aggregation algorithms. The first one is size of data set.
The second one is compression ratio. It is affected by the
number of dimensions and the size of the extra storage
space required by compression methods. In the header
compression method, the size of the extra storage space is
the header size. The third one is the size of available
memory. The last one is dimension size, namely, the
number of elements in each dimension.

We conducted experiments to investigate the effect of the
four factors on the performance of the algorithms. In the
experiments, data sets were randomly generated, and
stored using the compressed method described in
Section 2 for our algorithms and relational tables for the
traditional aggregation algorithms. In each experiment, we
randomly generated 10 aggregation operations, let each
algorithm perform all the 10 operations, and then we took
the average execution time of the 10 operations as the final
execution time of the algorithm. In the rest of this section, G,
M, Infix, and Prefix denote the G-Aggregation, M-Aggrega-
tion, Infix-Aggregation, and Prefix-Aggregation. Sort and
Hash denote the sort and hash-based relational aggregation
algorithms, and “X >Y” means “the execution time of
algorithm X is greater than that of Y.”

1820 F[-—=m—c
1620 F Prefix

Sort

1420 | ——Hasn
1220
1020 F
820
620
420
220
20 j "

Execution Time (Seconds)

2 5 10 15 20

Dimension Number

Fig. 14. Comparisons of Hash, Sort, G, and Prefix with varying dimension
numbers.

1810
1610 |
1410
1210
1010 |
810 I
610
410 |
210

10

Execution Time (Seconds)

N

N ——T+——T%

2 5 10 15 20

Dimension Number

Fig. 15. Comparisions of Hash, Sort, G, and Infix with varying dimensions
numbers.

5.1 Performance Related to Size of Data Set

In these experiments, the benchmark data set scheme
consists of 15 dimensions and one measure. The data types
of all dimensions are 4-byte integer. The data type of the
measure is 4-byte float number. We randomly generated
4 versions of the benchmark with 1,000,000, 5,000,000,
10,000,000, and 20,000,000 valid data entries. The header
size of each data set is 50 percent of the data set size. The
aggregation result size of each data set is 20 percent of the
data set size. Since M, Infix, and Prefix have special
requirements on aggregation dimensions and memory size,
five sets of experiments were conducted.

In the first set of experiments, available memory size is
fixed at 640K bytes. The memory size and the aggregation
operations performed in this set of experiments satisfy the
requirements of Prefix. Fig. 8 presents the execution times
of the algorithms while the number of data entries varies
from 1,000,000 to 20,000,000. The figures indicate that
Hash>Sort>G >Prefix, namely, Prefix is the fastest algo-
rithm and Hash is the slowest one. The figures also show
that the larger the data set size is the larger the ratio of the
execution times of Sort and Hash to the execution time of G
or Prefix. The reason is that the I/O cost of Sort and Hash
increases much faster than that of G and Prefix when the
operand data set size increases. In the figures, we also see
that all the execution times have a big jump at the data entry
number 5,000,000. It is because that the available memory

470 1 =g
420 M
370 Sort
320 | |—*—Hash
270
220
170
120 |
70
20 1 L L . .

Execution Time (Seconds)

Dimension Number

Fig. 16. Comparisons of Hash, Sort, G, and M with varying dimensions
numbers.

526 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002

E 80 -

= —-—M)y

§ 70 F Infix EE//

= e

~ 60

(&) |

Es |

Sl

o 40

o

o

230 f

g 20 1 1 1 1 1
>

= 2 5 10 15 20

Dimension Number

Fig. 17. Comparisons of M and Infix with varying dimensions numbers.

size can hold the whole aggregation result when the data set
size smaller than 5,000,000.

In the second set of experiments, available memory size
is fixed at 640K bytes for G, Infix, and Sort, and the
aggregation operations performed satisfy the requirements
of Infix. In order to get the aggregation results in acceptable
time using Hash algorithm, the available memory size is set
to 20 percent of the aggregation result size for Hash. Fig. 9
presents the execution times of the algorithms while the
data entry number varies from 1,000,000 to 20,000,000. The
figures indicate that Hash>Sort>G >Infix.

In the third set of experiments, available memory size is
the size of the maximum aggregation result, 125M bytes,
namely, 20 percent of the maximum data set size 20,000,000,
so that all the aggregation results fit in memory. Fig. 10
presents the experiment results. It indicates that all the
execution times are smaller than the first and second sets of
experiments. The reason is that large available memory
makes all algorithms faster. The figure also shows
Sort>Hash>G >M when the data entry number is greater
than 5,000,000. In the figures, we see that the execution
times of G are smaller than the execution times of M when
the data entry number is smaller than 5,000,000. It is
because that when the data set fit in memory M spends
more CPU time for hashing computation.

The fourth set of experiments is to study the performance
of the algorithms M, Infix and Prefix in case of the
aggregation results fitting in memory. The parameters are
the same as in the third set experiments. Fig. 11 presents the

80 |=mM P
70 | Prefix
60 r

30
20 1]]]]

2 5 10 15 20
Dimension Number

Execution Time (Seconds)
3
T
R
\

Fig. 18. Comparisons of M and Prefix with varying dimensions numbers.

1810 F

1510

1210 |

910

(Seconds)

610

Execution Time

310

10

Dimension Number

Fig. 19. Comparisons of Sort, Hash, and G with varying dimension
numbers.

comparisons of M and Infix, and Fig. 12 presents the
comparison of M and Prefix.

The fifth set of experiments is to compare the perfor-
mance of the algorithms G, Sort and Hash without any
restriction. The available memory size was fixed at 640K.
The experiment results in Fig. 13 show Hash>Sort>G.

5.2 Performance Related to Data Compression
Ratio

We first conducted experiments to study the performance of
the algorithms while the data set size is fixed and the
dimension number, which has great effect on the compres-
sion ratio, varies. For the experiments, the dimension
number of the operand data sets was varied from two to
20, the number of data entries was fixed at 10,000,000 data
entries, each with 64 bytes, and the aggregation result size
was kept at 2,000,000 data entries. Similar to Section 5.1, we
conducted five sets of experiments to meet the requirements
of Prefix, Infix and M. In the first two sets of experiments,
the available memory size is fixed at 12.5M bytes.

In the first set of experiments, the aggregation
operations performed satisfy the requirements of Prefix.
Fig. 14 presents the experiment results. This figure shows
that the execution times of G and Prefix increase very
slowly while the dimension number increases. The reason
is that the dimension number of a data set does not affect
the size of the compressed array storing the data set so
that the I/O costs of G and Prefix vary slightly when the

450 =G
» Prefix
L |
5:3 Sort
;}i 350 —%—Hash
2
250 t
=}
2
2 150 F
>
gs

—y
e,

B0 ettt Ot -

10k 500k 2M 10M
Memory Size (Bytes)

Fig. 20. Comparisons of Sort, Hash, Prefix, and G with varying memory
sizes.

LI AND SRIVASTAVA: EFFICIENT AGGREGATION ALGORITHMS FOR COMPRESSED DATA WAREHOUSES 527
“» -G
2 M
S 450
O sSort
(<]
—%—Hash

& 350 F (o] 350 F

=
(&) =
g &
B 280 [S 2 2ot
= e 9
S e 3 w %
- 150 8 in * * * x X
8 — o > 150
[0} Th———R—n_, n >
X 50 1 1 1 1 1 f 1 1 [Ea]
[Ga] A T 7 Al

10k 50k 500k 1.5M 2M 5M 1OM 15M 50 L 1 L L '

Memory Size (Bytes)

Fig. 21. Comparisons of Sort, Hash, Infix, and G with varying memory
sizes.

number of the dimensions increases. On the opposite,
when the dimension number of a data set increases, the
size of the relational table storing the data set increases.
Thus, the I/O costs of Hash and Sort increase very fast
with the increasing of the dimension number. Fig. 14 also
show Hash>Sort>G>Prefix.

In the second set of experiments, the aggregation
operations performed satisfy the requirements of Infix.
Fig. 15 presents the experiment results. This figure shows
that the execution times of Sort and Hash still increase
much faster than Infix and G with the same reason in the
first set of experiments.

In the third set of experiments, to meet the requirement
of M, memory size is fixed at 125M bytes to hold the
aggregation result. Fig. 16 presents the experiment results.
The figure shows that the execution times of Sort and Hash
increase much faster than M and G, the performance of M is
only a little better than G in case of aggregation results
fitting in memory.

The fourth set of experiments is to study the performance
of the algorithms M, Infix and Prefix in case of the
aggregation results fitting in memory. The parameters are
the same as in the third set experiments. Fig. 17 presents the
comparison of M and Infix, and Fig. 18 presents the
comparison of M and Prefix.

—~
<5
< 450 F ——G
5 45
Q Sort
)
o —¥—Hash
S 350 -
)
£
o
[250 |
o
@]
o -
; 150
—
3 .=, .
™ 50 1 1 1 1 1 1 1]
m

10k 50k 500k 1.5M 2M 5M 10M 15M
Memory Size (Bytes)

Fig. 22. Comparisons of Sort, Hash, and G with varying memory sizes.

12.5M 20M 25M 30M 35M

Memory Size (Bytes)

Fig. 23. Comparisons of Sort, Hash, M, and G with varying memory
sizes.

In the fifth set of experiments, memory size is fixed at
12.5M bytes. Fig. 19 presents the experiment results. The
figure indicates that the execution times of G increase much
slower than Sort and Hash.

Similar to the above four sets of experiments, we also
conducted five sets of experiments to study the perfor-
mance of the aggregation algorithms while the header size,
which also has effect on compression ratio, varies. The
experiment results show that the execution times of Sort
and Hash kept the same while the header size increases
because that the header size has no effect on the relational
table, and the header size has little effect on the perfor-
mance of G, M, Prefix, and Infix. The details of the
experiments see [24].

5.3 Performance Related to Memory Size

We conducted five sets of experiments to study the
performance of the algorithms while the memory size
varies. In all the experiments, each operand data set consists
of 15 dimensions, one measure, and has 10,000,000 data
entries, each with 64 bytes.

In the first three sets of experiments, the aggregation
result size is fixed at 2,000,000 data entries, and the
available memory size varies from 10k bytes to 15M bytes.
Figs. 20, 21, and 22 illustrate the results of the three sets of

——M
—a—Infix

80
0 F =
60
50
40
30 F
20 |
10

Execution Time (Seconds)

12.5M 20 25M 30M 35M
Memory Size (Bytes)

Fig. 24. Comparisons of M and Infix with varying memory sizes.

528 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 3, MAY/JUNE 2002

——M
90
80 I
70
60
50
40
30
20

—a—Prefix

Execution Time (Seconds)

12.5M 20M 25M 30M 35M
Memory Size (Bytes)

Fig. 25. Comparisons of M and Prefix with varying memory sizes.

experiments. The figures indicate that the execution time
reduces while the available memory size increases, after
available memory size reaches some point (here is
1.5M bytes) the execution times of all the algorithms reduce
slowly, and Hash is very sensitive to available memory size.

In the fourth and fifth sets of experiments, the aggrega-
tion result size is fixed at 200,000 data entries, and the
memory size varies from 12.5M to 35M bytes. Memory of
12.5M bytes can hold the aggregation result that meets the
requirement of M. Figs. 23, 24, and 25 present the results of
the fourth set of experiments. Since the aggregation results
can be held in memory, all algorithms become main
memory algorithms. Thus, the execution times of all the
algorithms vary slightly while the memory size increases.
Fig. 24 shows that the execution time of Infix reduces
significantly when the memory size is greater than
25M bytes. The reason is that after the memory size is
greater than 25M the buffer number is greater than the
number of runs that need to be merged so that Infix can
merge the runs in one scan of the operand data set.

5.4 Performance Related to Dimension Size

The dimension size, namely, the number of elements in
each dimension, has a significant effect on the performance
of Infix. When the dimension size is increased, the number
of the runs that need to be merged by Infix may increase so
that the I/O and CPU cost may increase as well. However,
the dimension size has a little effect on other aggregation
algorithms. Since Infix and Prefix are used for different

—~
w700 ¢

_g ——Infix
o 600 | »

S ——G

[% 500 Sort
L

L 00 b Hash
=

o

= 300 b

(w

O 200

o

o

8 100 F - - - 4 -

) ¢ ¢

= 0 L s L L

m

1.OE+01 1.0E+02 5.0E+02 1.0E+03 5.0E+03 1.0E+04 5. 0E+04

Number of Runs

Fig. 26.
numbers.

Comparsion of G, Infix, Sort and Hash with varying run

» —e—1Infix

= —=—G

5 500 F Sort

8 —)K—ﬁash

L 400 F

2

5 300 F

—

§ 200 | X L3 X X L3

Yy

S 100 [g——t——a—pp——o—%

é 0 1 1 1 1 1 1 1
1. OE+01 5. 0E+02 5. 0E+03 5. 0E+04

Number of Runs

Fig. 27. Comparison of G, M, Infix, Sort, and Hash with varying run
numbers.

aggregation operations, we cannot compare them. We
conducted two sets of experiments to study the perfor-
mance of the aggregation algorithms while the dimension
size varies. In these experiments, all operand datsets consist
of 15 dimensions and one measure. Its first two dimensions
have fixed sizes 2 and 5, the size of the third dimension
varies from 1 to 5,000, and every aggregation dimension set,
which is an infix of the dimension order of the operand data
sets, of each aggregation operation begins from the fourth
dimension. Thus, the number of the runs that need to be
merged by Infix varies from 10 to 50,000. In the experi-
ments, the data set size is fixed at 10,000,000 data entries,
each with 64 bytes, the aggregation result size is fixed at
2,000,000 data entries, and the run number varies from 10 to
50,000.

In the first set of experiments, available memory size is
32M bytes. Fig. 26 illustrates the execution times of G,
Infix, Sort, and Hash while the run number varies. In the
second set of experiments, the aggregation result can be
held in available memory, namely, available memory size
is 125M bytes. Fig. 27 shows the execution times of G, M,
Infix, Sort and Hash while the run number varies. The
figures show that the performance of Infix will be worse
than other algorithms when the run number reaches a
certain threshold value.

6 CoNcLUSION AND FUTURE RESEARCH

In this paper, a collection of aggregation algorithms was
described and analyzed. These algorithms operate directly
on compressed data sets in MDWs without the need to
first decompress them. The algorithms are only applicable
to the mapping-complete compression methods that are
often used for compressing MDWs. A decision procedure
is also given to select the most efficient algorithm based
on aggregation request, available memory, as well as the
data set parameters for a given aggregation request. The
analysis and experimental results show that the proposed
algorithms in this paper have better performance than the
previous aggregation algorithms. In conclusion, direct
manipulation of compressed data is an important tool for
managing very large data warehouses. Aggregation is just
one (and important) such operation in this direction.
Additional algorithms will be needed for OLAP operators

LI AND SRIVASTAVA: EFFICIENT AGGREGATION ALGORITHMS FOR COMPRESSED DATA WAREHOUSES 529

on compressed multidimensional data warehouses. We
are currently working on algorithms for other operations,
such as searching, cube, and other OLAP operations, on
compressed MDWs. We are also working on algorithms
for OLAP operations applicable to other kinds of
compression methods other than mapping-complete com-
pression methods.

ACKNOWLEDGMENTS

This work is supported in part by the Natural Science
Foundation of China under Grant No. 69873014 and in part
by the 973 Plan of China through Grant No. G1999032704.

REFERENCES

[1] J. Gray, S. Chaudhuri, A. Bosworth, et al., “Data Cube: A
Relational Aggregation Operator Generalizing Group-by,Cross-
Tables and Sub-Totals,” Data Mining and Knowledge Discovery,
vol. 1, no. 1, pp. 29-53, Jan. 1997.

[2] S. Yazdani and S. Wong, Data Warehousing with Oracle. Upper
Saddle River, N.J.: Prentice-Hall, 1997.

[3] V.R. Gupta, Data Warehousing with MS SQL Server Unleashed.
Englewood Cliffs, N.J.: Sams, 1977.

[4] D. Chatziantonian and K. Ross, “Querying Multiple Features in
Relational Databases,” Proc. 22nd Int’l Conf. Very Large Data Bases,
pp- 295-306, Sept. 1996.

[5] Arbor Sofware, “The Role of Multidimensional Database in a Data
Warehousing Solution,”White Paper, Arbor Software, URL:
http://www. arborsoft.com/papers/wareTOC.html.

[6] W.H. Inmon, “Multidimensional Databases and Data Warehous-
ing,” Data Management Rev., Feb. 1995.

[71 G. Colliat, “OLAP, Relational and Multidimensional Databases
Systems,” SIGMOD Record, vol. 25, no. 3, Sept. 1996.

[8] M.A. Bassiouni, “Data Compression in Scientific and Statistical
Databases,” IEEE Trans. Software Eng., vol. 11, no. 10, pp. 1047-1058,
Oct. 1985.

[9] M.A. Roth and S.J. Van Horn, “Database Compression,” SIGMOD
RECORD, vol. 22, no. 3, pp.19-29, Sept. 1993.

[10] Y. Zhao, P.M. Deshpande, and J.F. Naughton, “An Array-Based
Algorithm for Simultaneous Multidimensional Aggregations,”
Proc. 1997 ACM-SIGMOD Conf. Management of Data, pp. 159-170,
May 1997.

[11] G. Graefe, “Query Evaluation Techniques for Large Databases,”
ACM Computing Surveys, vol. 25, no. 2, pp. 73-169, June 1993.

[12] V. Harinarayan, A. Rajaraman, and J.D. Ullman, “Implementing
Data Cube Efficienly,” Proc. 1996 ACM-SIGMOD Conf. Manage-
ment of Data, pp. 205-216, June 1996.

[13] H. Gupta, V. Harinarayan, A. Rajaraman, and J.D. Ullman, “Index
Selection for OLAP,” Proc. 13rd Int’l Conf. Data Eng., pp. 208-219,
Apr. 1997.

[14] Y. Kotidis and N. Roussopoulos, “An Alternative Storage
Organization for ROLAP Aggregation Views Based on Cubtrees,”
Proc. 1998 ACM-SIGMOD Conf. Management of Data, pp. 249-258,
June 1998.

[15] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos, “Cubtree:
Organization of and Bulk Incremental Updates on the Data Cube,”
Proc. ACM-SIGMOD Conf. Management of Data, pp. 89-99, May
1997.

[16] S. Agarwal, R. Agrawal, P.M. Deshpande, et al., “On the
Computation of Aggregations,” Proc. 22nd Int’l Conf. Very Large
Data Bases, pp. 506-521, Sept. 1996.

[17] A. Shoshani, “Statistical Databases: Characteristics, Problems and
Some Solutions,” Proc. Eighth Int’l Conf. Very Large Data Base,
pp- 208-222, Sept. 1982.

[18] M.C. Chen and L.P. McNamee, “On the Data Model and Access
Method of Summary Data Management,” IEEE Trans. Knowledge-
and Data Eng., vol. 1, no. 4, pp. 519-529, Dec. 1989.

[19] J. Srivastava, J.S.E. Tan, and V.Y. Lum, “TBSAM: An Access
Method for Efficient Processing of Statistical Queries,” IEEE Trans.
Knowledge and Data Eng., vol. 1, no. 4, pp. 414-423, Dec. 1989.

[20] Statistical and Scientific Databases. A. Michalewicz, ed., 1992.

[21] S. Eggers and A. Shoshani, “Efficient Access of Compressed
Data,” Proc. Sixth Int’l Conf. Very Large Data Bases, pp. 205-211, Oct.
1980.

[22] J. Li, HK. Wang, and D. Rotem, “Batched International Searching
on Databases,” Proc. Third Int'l Conf. Data Eng., pp.18-24, Feb.
1987.

[23] J. Li, D. Rotem, and H.K. Wang, “A New Compression Method
with Fast Searching on Databases,” Proc. 19th Int’l Conf. Very Large
Data Bases, pp. 311-318, Sept. 1987.

[24] J. Li and]. Srivastava, “Aggregation Algorithms for Very Large
Compressed Data Warehouses,” technique report, Harbin Inst. of
Technology, FTP://210.76.60.241, 1999.

Jianzhong Li received the Bachelor degree in
mathematics from the Heilongjiang University,
Harbin, China, in 1975, the MS, and PhD
degrees in computer science from the Harbin
Institute of Technology, in 1982 and 1985,
respectively. He has been on the faculty of the
Department of Computer Science and Engineer-
ing at the Harbin Institute of Technology, since
1987 and is currently a professor and chairman
of the Department of Computer Science and
Engineering at the Harbin Institute of Technology. From 1985 to 1987,
he was a researcher in the Information Research Group at Lawrence
Berkeley National Laboratory, Berkeley, California He has also been a
visiting professor at the University of Minnesota, Minneapolis, from 1991
to 1992. His research interests include parallel databases, data
warehouses, data mining, parallel processing, database techniques for
Web, and multimedia. He has authored three books, including Parallel
Database Systems, Principle of Database Systems, and Digital Library,
and published more than 120 technical papers in refereed journals and
conference proceedings in the areas of databases, parallel processing,
database techniques for Web, data mining, data warehouses, and
multimedia. He has delivered a number of invited presentations and
participated in panel discussions on these topics. His professional
activities have included service on various program committees, and he
has refereed papers for varied journals and proceedings. He is a
member of the IEEE Computer Society and the ACM.

Jaideep Srivastava received the BTech degree
in computer science from the Indian Institute of
Technology, Kanpur, India, in 1983, the MS, and
PhD degrees in computer science from the
University of California, Berkeley, in 1985 and
1988, respectively. He has been on the faculty of
the Department of Computer Science and
Engineering of the University of Minnesota,
- Minneapolis, since 1988, and is currently a
professor. He served as a research engineer
with Uptron Digital Systems in Lucknow, India, in 1983. He has
published more than 110 papers in refereed journals and conference
proceedings in the areas of databases, parallel processing, artificial
intelligence, and multimedia; and he has delivered a number of invited
presentations and participated in panel discussions on these topics. His
professional activities have included service on various program
committees and he has refereed papers for varied journals and
proceedings, for events sponsored by the US National Science
Foundation. He is a senior member of the IEEE and a member of the
IEEE Computer Society and the ACM.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

