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Error Spreading: A Perception-Driven Approach to
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Abstract—With the growing popularity of the Internet, there
is increasing interest in using it for audio and video transmission.
Perceptual studies of audio and video viewing have shown that
viewers find bursty losses, mostly caused by congestion, to be the
most annoying disturbance, and hence these are critical issues to
be addressed for continuous media streaming applications. Clas-
sical error handling techniques have mostly been geared toward
ensuring that the transmission is correct, with no attention to time-
liness. For isochronous traffic like audio and video, timeliness is
a key criterion, and given the high degree of content redundancy,
some loss of content is quite acceptable. In this paper, we introduce
the concept oferror spreading, which is a transformation technique
that permutes the input sequence of packets (from a continuous
stream of data) before transmission. The packets are unscrambled
at the receiving end. The transformation is designed to ensure that
bursty losses in the transformed domain get spread all over the
sequence in the original domain, thus improving the perceptual
quality of the stream. Our error spreading idea deals with both
cases where the stream has or does not have inter-frame dependen-
cies. We next describe a continuous media transmission protocol
and experimentally validate its performance based on this idea. We
also show that our protocol can be used complementary to other
error handling protocols.

Index Terms—Bursty error, error spreading, multimedia.

I. INTRODUCTION

GROWING with the popularity of the Internet are multi-
media systems and applications, as well as numerous re-

search efforts directed at providingcontinuous media(CM) ser-
vices over the Internet (e.g., video, audio). However, the Internet
provides asingle class best effortservice, and does not provide
any sort of guarantees [3]. A characteristic of networks of spe-
cial concern to this paper is transmission errors, and specifi-
cally the dropping of data packets. Packets are dropped when
the network becomes congested, and given the nature of this
phenomenon, strings of successive packets are often dropped
[13], leading to significant bursty errors [28]. This bursty loss
behavior has been shown to arise from the drop-tail queueing
discipline adopted in many Internet routers [12]. This problem
may be reduced if Random Early Detection (RED) gateways
are used [6]. Nevertheless, since drop-tail queueing discipline
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is still adopted in many routers, bursty network errors still have
to be considered.

Handling bursty errors has always been problematic, espe-
cially since no good models exist for its prediction. Moreover,
since most CM applications do not tolerate bursty error, it is
imperative that they be handled well. Perceptual studies on CM
viewing have shown that user dissatisfaction rises dramatically
beyond a certain threshold of bursty error [27], [26]. These ob-
servations point quite solidly to the need for development of ef-
ficient mechanisms to control bursty errors in CM streaming.

Redundancy is the key to handling packet loss or damage in
standard communication protocols. There are two main classes
of error handling schemes: thereactiveschemes and theproac-
tive schemes. Reactive schemes respond by taking some ac-
tion once transmission error has been detected, while proac-
tive schemes aim at error avoidance. In reactive schemes, the
reaction can be initiated by the sender or the receiver. Sender
initiated reaction occurs in schemes based on feedback com-
bined with retransmission [3], [15]. The feedback control can
be based on stream rate [9], bandwidth [5], loss/delay [3], and a
wide variety of network QoS parameters [14]. Receiver initiated
reaction occurs in reconstruction based schemes like [25], [1].
Coding data in an error correcting manner before transmission
is pro-active. Examples include the coding scheme in [7] and
theForward Error Correction Codesin [2]. There also exist hy-
bridschemes which use both forms of redundancy [16]. Another
technique is callederror concealment[8], in which some form
of reconstruction is done at the receiver to minimize the impact
of missing data. Yet another approach is to provide real time ser-
vices like RSVP and RTP, which offer varying degrees of perfor-
mance guarantees for CM applications [29], [17]. Services like
RTP/RSVP require that some resource allocation and/or reser-
vation mechanism be provided by the network [3].

Recent work ([18], [30]) has proposed schemes where the
overall characteristics of the data being transmitted can be used
to control the transmission error. For instance, [30] has proposed
selectively dropping video frames on the sender side, based on a
cost-benefit analysiswhich takes into account the desired QoS.
This is quite effective in a LAN (senders are known and coop-
erative) or the Internet if RED gateways are popular.

In this paper we propose a new type of scheme for handling
bursty errors callederror spreading. The main idea is not to re-
duce overall error, but rather to tradeoff bursty error (thebad
error) for average error (thegood error). Perceptual study of
CM viewing [27], [26] has shown that a reasonable amount of
overall error is acceptable,as long as it is spread out. A similar
approach has been taken by [28]. However, the impact of packet
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Fig. 1. Two example streams used to explain metrics.

scrambling on user perception or system resources was not in-
vestigated. Preliminary reports on the results of this paper have
appeared in [11], [10], [24].

In this paper we make several contributions. First, we for-
mulate the problem of error handling in CM transmission as a
tradeoff between the user QoS requirements, network charac-
teristics, and sender resource availability. Second, we provide a
complete analytical solution for the special case where the net-
work errors are bounded. While this solution may be of actual
use only in some specialized networks, e.g., a tightly controlled
real-time network, its principal use is in providing important
mathematical relationships that can be used as the basis of pro-
tocols for general networks. Third, we extend the problem for-
mulation of error handling in CM transmission as a tradeoff be-
tween the user QoS requirements, network characteristics, and
sender resource availability to include streams with inter-frame
dependency. Next, we use this analysis to develop such a pro-
tocol for networks where there is no bound on the error. We also
provide a general error spreading technique which can handle
these types of streams and a protocol which is orthogonal in na-
ture with respect to other error handling schemes. Finally, we
present results of an experimental evaluation that illustrates the
benefits of the proposed scheme.

This paper is organized as follows: Section II formulates
the problem and Section III presents a mathematical analysis
of the bounded network error case. Section IV presents the
general solution to streams with inter-frame dependencies.
Section V provides a protocol where the network error is
unbounded and which can be plugged into other error han-
dling schemes. Section VI presents results of experiments and
simulations which validate our claim. Finally, Section VII
concludes the paper.

II. BACKGROUND

This section briefly discusses the content-based continuity
QoS metrics introduced in [26]. Next, we give motivations for
our work. Finally, we define our problem based on the metrics
introduced.

A. Perceptual QoS Metrics

For the purpose of describing QoS metrics for lossy media
streams, CM stream is envisioned as a flow of data units [re-
ferred to as logical data units (LDUs) in the uniform framework
of [23]]. In our case, we take a video LDU to be a frame, and an
audio LDU to constitute , i.e., 266 samples of audio1 .
In this paper, we use mainly the content-based continuity met-
rics proposed in [26]. Relevant issues arising out of rates and
drifts [26] are discussed briefly in Section 5.3. Note also that
we shall use the term LDU and frame interchangeably.

Fig. 1 is from [26]. Given the ideal rate and the beginning
time of a CM stream, there is an ideal time for a given LDU to
arrive/ be displayed. Given the envisioned fluid-like nature of
CM streams, the appearance time of a given LDU may deviate
from this ideal. Ourdrift parameters specify aggregate and con-
secutive nonzero drifts from these ideals, over a given number
of consecutive LDUs in a stream. For instance, first four LDUs
of two example streams with their expected and actual times of
appearance, are shown in Fig. 1. In the first example stream, the
drifts are, respectively, 0.0, 0.2, 0.2, and 0.2 s; and accordingly it
has an aggregate drift of 0.6 s per four time slots, and a nonzero
consecutive drift of 0.6 s. In the second example stream, the
largest consecutive nonzero drift is 0.3 s and the aggregate drift
is 0.5 s per four time slots. The reason for a lower consecutive
drift in stream 2 is that the unit drifts in it are more spread out
than those in stream 1.

Ideal contents of a CM stream are specified by the ideal con-
tents of each LDU. Due to loss, delivery or resource overload
problems, appearance of LDUs may deviate from this ideal, and
consequently lead to discontinuity. The metrics of continuity are
designed to measure the average and bursty deviation from the
ideal specification. A loss or repetition of a LDU is considered a
unit loss in a CM stream. (A more precise definition is given in
[26].) The aggregate number of such unit losses is theaggregate
loss factor(ALF) of a CM stream, while the largest consecutive
nonzero loss is itsconsecutive loss factor(CLF). In the example
streams of Fig. 1, stream 1 has an aggregate loss ofand a

1SunAudio has 8-bit samples at 8 kHz. An audio frame constitutes of 266
such samples, which is equivalent to a play time of one video frame, i.e., 1/30 s.
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TABLE I
EXAMPLE OF HOW THE ORDER OFFRAMES SENT AFFECTSCLF

consecutive loss of 2, while stream 2 has an aggregate loss of
and a consecutive loss of 1. The reason for the lower con-

secutive loss in stream 2 is that its losses are more spreadout
than those of stream 1. Note that the metrics already take care of
losses (both consecutive and aggregate) that arise due to timing
drifts.

In a user study [27], it has been determined that the tolerable
value for consecutive losses of video is two frames. For audio,
this limit was about three frames.

B. Impact of Network Errors on QoS

One of the most important QoS parameters that affects the
quality of a CM stream is the CLF [26]. Packet transmission
on networks shows a bursty behavior, alternating between
spurts of packet loss and packet delivery [28], [13], [12]. This
usually causes unacceptably high CLF from a user perception
point of view. For example, suppose we send a sequence
of 17 consecutive video frames numbered 1 to 17. During
transmission, a network bursty error of size 7 occurs, which
causes the loss of frames numbered 7 to 13, as shown in the
first row of Table I. This causes the stream to have a CLF of

.

Now, suppose we permute this sequence of frames before
transmission so that consecutive frames become far apart in the
sequence, the CLF can be reduced significantly. To illustrate this
idea, consider the frame transmission order shown in the second
row of Table I. With exactly the same bursty error, once again
seven consecutive frames are lost, except this time they are con-
secutive only in the permuted domain. In the original domain,
these are spread far apart, as shown in row 3 of Table I. Clearly,
if the 17 frames were sent in this order, we would have a CLF
of only .

Table I summarizes our example by giving three sequences
and their corresponding CLFs. The first sequence is the natural
order of frames, the second one is the permuted order, and the
third one is the unpermuted order observed at the receiver’s side.
The third sequence was presented to show how the loss has been
spread out over the original sequence. The boxed numbers rep-
resent lost frames.

This example raises the following question:What permuta-
tion of the input sequence of frames minimizes theCLF for a
given network loss?A number of issues concerning this ques-
tion need to be addressed.

• First, there is a need for a reasonable metric to compare
permutations. We use the CLF metric introduced earlier,
as it is directly related to human perception [26].

• Second, a number of technical questions must be an-
swered, including:

a) What is the minimum CLF that can be supported?
b) How many such permutations exist?
c) Amongst the permutations which can achieve this

bound, which one do we choose?

From an algorithmic point of view, a) is the most inter-
esting question.

• Next, the example implicitly assumes that the frames are
independent, and the loss of one frame does not affect
others. For encoded streams which introduce inter-frame
dependency, e.g., MPEG, merely permuting the input se-
quence is not sufficient.

• Finally, network behavior is nondeterministic, and any
permutation scheme must address this issue.

In this paper, we address the issues listed above.

C. Problem Statement

We now formally state the problem.
1) Bursty Error Reduction Problem (BERD):

• Objective: to reduce the bursty error, i.e., CLF, to a per-
ceptually acceptable level (by spreading it out over the
stream).

• Input parameters:
— is the sender’s buffer size, in terms of LDUs.is

determined by the sender’s operating environment and
its current status.

— is the upper bound on the size of a bursty loss in the
communication channel, within a window of LDUs.

— is the user’s maximum acceptable CLF.
• Output: a permutation function on , where

, which decides the order in which a
set of consecutive LDUs must be sent. Moreover, the
system is expected to give the lower boundwhich is the
minimum CLF that can be supported in this constrained
environment.

• Assumption: two consecutive bursty losses are at least
LDUs apart.

Fig. 2 visualizes how the solution space for a particular value
of would appear. The boundary of the curve is essentially what
we found. Above it is the feasible region, where intuitively if we
increase , then should still be the same or less. There is a
typical trade off between buffer size and CLF . The greater

is, the less we can support but also the greater memory
requirement and initial delay time. Given , line
cuts the boundary curve at, at or above which we can support.
Conversely, given , line intersects the curve at , the
minimum buffer size required to support.
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Fig. 2. Part of deterministic solution space.

There are several points worth noticing. First, we deal only
with data streams that have no inter-frame dependency such
as Motion-JPEG or uncompressed data streams (audio, video,
sensor data, ). This allows us to consider every frame to be
equally important; thus, we can permute the frames in any way
we would like to. Second, the frames in these types of streams
have relatively comparable sizes. For example, a sequence of
MJPEG frames only has a change in size significantly when the
scene switches. So, no matter if we send the frames by breaking
them up into equal size UDP packets or if it is the transport
layer interface (TLI) which does so, a consecutive packet loss
implies a proportional consecutive frame loss. Finally, to satisfy
our assumption that two consecutive lost windows are at least
frames apart, closer lost windows can be combined and consider
to be a larger lost window.

III. ERRORSPREADING THROUGH PERMUTATIONS

In this section, we will discuss the case where the bound
of continuous network loss is known. For convenience, we first
state the problem in purely mathematical terms and establish
some notations to be used throughout the proof.

We are given positive integersand . Let denotes the set
of all permutations on . For any permutation

, the sets given by

are called thesliding windowsof size (of ), where the indices
are calculated modulo , then plus 1. The reader is referred
to the Appendix for detailed examples. Thus, when

, and when
.

For any pair of integers and such that , let
denotes the set . Let be the sequence

of integers defined as follows.

if

if

Let . Then is defined to be

Our objective is to find as a function of and . Moreover,
we also wish to specify a permutationso that .

Informally, when is the maximum
number of consecutive integers in . While if

is the sum of two quantitiesand , where is the length
of the longest consecutive integer sequence in
which ends in , and is the length of the longest consecu-
tive integer sequence in which starts at 1.
The reason for this is that suppose we apply our permutation to
two adjacent buffers of size , we would like our permutation
to also deal with the case where the network loss burst occurs
across these two buffers.

The value of and permutation depends tightly on
the relationship between and . We summarize our result
in Theorem 3.2. The details of the proof are given in the
Appendix. Algorithm calculatePermutation produces
the appropriate permutation which supports the bestgiven

and .
Remark 3.1: If is known and is fixed, then when

and when .
Theorem 3.2:If and are both determined, then

• when and when
• when .

Proof: Since if then
, this follows from the Lemmas given in the Appendix.
Also note that if the desired is given, these formulas allow

us to find the minimum buffer size to achieve .
AlgorithmcalculatePermutation is a permutation gen-

erator (listed in Fig. 3) which generates permutationwith
on input and . Notice that it takes only linear time.

1) Benefits of Solving the Bounded Error Case:The as-
sumption that is known can be envisioned in future networks
where some sort of QoS guarantees are provided, such as ATM,
Internet2, etc. More importantly, it gives us a rigid background
to solve the unbounded error case.

IV. M ODELING STREAMS WITH INTER-FRAME DEPENDENCY

This section is organized as follows. Section IV-A defines
related concepts from Combinatorics, Section IV-B discusses
our solution for MPEG streams, and Section IV-C generalizes
the analysis for any stream with inter-frame dependencies.

A. Poset Model and Its Properties

The inter-frame dependency of a stream can be modeled by
a combinatorial structure called a partially ordered set (poset).
For a rigorous treatment on posets, the reader is referred to [22].

A poset is a set along with a binary relation satisfying
the following axioms:

• Reflexivity: .
• Antisymmetry:if and then .
• Transitivity: if and then .
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Fig. 3. Permutation generator algorithm.

Fig. 4. Sample pattern of MPEG frame dependency.

Abusing notation, we shall also call the poset. Notice that
a poset can also be represented by adirected acyclic graph
(DAG). Two element and of a poset arecomparableif

or . Otherwise, and are incomparable. A
chain is a poset in which any two elements are comparable. A
chain has length if it has elements. Anantichain is
a subset of a poset such that every pair of elements in

is incomparable. Anantichain decompositionof size of
is a partition of i nto disjoint antichains . For

covers if and for all and
implies either or . is minimal if

. is rankedif there exists a unique
rank function , where is the length
of the longest chain in , such that if is minimal then

, and if covers then . A linear
extensionof a poset is anorder preserving bijection which
maps onto a chain of size . Note that this is similar to a
topological sortof a DAG [4]. Thus, a linear extension of a poset
can be obtained by a topological sort algorithm.

B. Analysis of the MPEG Case

Fig. 4 is a typical dependency diagram amongst MPEG
video frames. A group of pictures (GOP) is a set of consecutive
frames beginning with an -frame (inclusive) and ending
with the next -frame (exclusive). Although not required by
the MPEG standard, a fixed spacing between-frames and
betweenanchor frames( - and -frames) is often used. Thus,
usually all GOPs have the same size. In Fig. 4, the GOPs have
size 12. The broken arrows represent possible dependency of
the beginning -frames of the current GOP to the last-frame
of the previous GOP. This is calledopenGOP. MPEG allows
closedGOPs where there is no such dependency. Observe that
if the delivery of anchor pictures( and frames) can be

ensured, then thenonanchor pictures( frames) are free to
be permuted. In real-time video transmission, timeliness of
frame delivery is important, and thus, permuting frames before
sending helps in reducing CLF, as well as intelligent frame
dropping when transmission is lagging behind in time.

CM streams with inter-frame dependency can be modeled as
a poset of frames, where for any two framesand

if and only if is dependent on (directly or indirectly).
Borrowing terminology from MPEG, a frame is called
ananchor frameif . In multimedia transmission,
due to limited buffer capability of the sender, at any time only a
subposet of is present in the buffer. Moreover, it is reasonable
that the frame transmission order be a linear extension of
where the anchor frames go first, since the nonanchor frames
cannot be reconstructed without the anchor frames.

To illustrate this, consider Fig. 4 where the anchor frames are
the ’s and ’s. Assuming the server buffer has capability for
two GOPs, a possible order of frame transmission is

If all frames are received in this order, the client buffer has
high utilization. At any time, the client’s decoder needs to store
only two anchor frames and the scratch memory for the frame
being currently decoded. For example, supposeand are in
the decoder memory. Upon arrival is loaded into the scratch
memory for decoding, followed by , etc; When arrives, it
is decoded and replaces ; and the process continues.

In practice, however, network losses can occur, frames can ar-
rive out of order, and the frames in the server’s buffer can only
be sent within a buffer cycle time. These can potentially lead to
very high CLF, and thus unacceptable perceptual quality. For ex-
ample, consider the case where is lost, either due to network
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Fig. 5. Layered permutation transmission order for MPEG.

loss or the server running out of buffer cycle time. ,
and are all considered to be lost since we needto re-
construct them. This causes a CLF of 5—more than twice the
perceptually tolerable level of CLF [27]. The reason for this is
clear, namely if any anchor frame is lost, a high CLF automati-
cally occurs.

To solve this problem, we transmit the anchor frames first:
, and also try to ensure their

arrivals, possibly with retransmission. After all the anchor
frames have been sent, the frames are permuted using the
error spreading scheme and transmitted in that order. Thus, if
there isn’t enough time to send all theframes, this ordering
allows the selection of which frames to send. Note that the
anchor frames usually have larger sizes and thus take more time
for transmission. However, given the nature of dependencies,
their successful transmission is critical.

Further, suppose the sender and receiver can handle buffering
of GOPs, for some natural number. Now, it is possible to
permute the -frames in the buffer, permute the’s ,
permute ’s , etc. The advantage is that if all
slots are used up before all anchor frames have been success-
fully transmitted, the CLF is better than without permutation.
This scheme is theLayered Permutation Transmission Order for
MPEG and is illustrated in Fig. 5. Here, is the permutation
function generated by thecalculatePermutationalgorithm.

Notice that the dependencies we are considering here are at
the frame level. Analyzing the effect of our scheme with re-
spect to finer inter-object dependencies, such as spatial and/or
temporal dependencies in MPEG-4,2 is beyond the scope of
this paper. However, as MPEG-4 provides a facility for com-
bining individual visual objects into a scene using a hierarchical
description, it is conceivable that the generalized solution pre-
sented in Section IV-C is applicable.

C. Generalized Solution

In general, given a CM stream whose inter-frame dependency
is modeled by a poset, a general solution must answer the fol-
lowing questions: 1) which sets of frames can be permuted be-
fore transmission, and 2) which sets of frames form each layer
in the proposed scheme. To answer 1), notice that the transmis-
sion order of frames must obey the dependencies in. Thus,

2See ISO/IEC 14 496-1, Coding of audio-visual objects: systems, final draft
international standard, ISO/IEC JTC1/SC29/WG11 N2501, October 1998.

Fig. 6. Classification of error handling schemes.

the permutable sets are precisely the antichains of. To an-
swer 2), observe thatif there exists an antichain decomposition

of such that
then we can use these antichains to be

the layers of the transmission scheme. Intuitively, frames in
have higher priority than those in since the latter might de-
pend on the former, but not vice versa. A natural goal is to min-
imize the number of layers, increasing the average number of
frames in each layer, which can make the permutation more ef-
fective. If is ranked, as is the case with MPEG and H261,
the situation becomes particularly easy. Letbe the set of el-
ements of with ranks , where is the length of
the longest chain in . Then, clearly for all is an antichain.
Moreover, it is a well known fact from poset theory that the size
of the minimum antichain decomposition is equal to the size of
the longest chain [22]. Consequently,being ranked automat-
ically gives us the best antichain decomposition from which the
layering can be derived.

V. ERRORSPREADING PROTOCOL

Perceptual studies have established the tolerance levels for
discontinuity in CM viewing [27], [26]. Discontinuities beyond
these levels has been shown to increase user dissatisfaction to
unacceptable levels. The proposed scheme uses an end-user
driven approach to minimize the amount of discontinuity
perceived. Error handling schemes can be classified into the
different categories shown in Fig. 6. Our earlier work [10],
[11] has shown that the scrambling scheme decreases CLF,
the measure of a CM stream’s discontinuity, when network
loss is bursty. This proves that the scheme proposed in block
D is better than the naive transmission in block A of Fig. 6.
As can be seen from Section III, schemes in block A or D
work for encoding schemes like MJPEG, with no inter-frame
dependency. However, for a dependent stream like MPEG,
where loss of a critical frame (e.g., MPEGframes) cannot be
tolerated, the schemes in blocks A and D are not very useful.

A variety of schemes have been proposed in the literature
(block B and C in Fig. 6) which use some form of redundancy
to handle transmission failure in streams with inter-frame de-
pendency. Reactive schemes use feedback/retransmission based
(block B), while proactive schemes use forward error correc-
tion in the transmitted stream (block C). Additionally, there are
hybrid schemes which combine both proactive and reactive ap-
proaches [16]. In Section IV, we provided a permutation order
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Fig. 7. (a) Protocol setting. (b) Protocol illustration.

for dependent streams, e.g., MPEG, which improves CLF. The
goal of this section is to show that error spreading techniques can
be used orthogonally to the error handling schemes in blocks B
and C, which will help reducing CLF as much as possible.

This section is organized as follows. Section V-A addresses
the buffer requirement for the use of our protocol. Section V-B
discusses how our protocol functions. Section V-C argues that
our protocol is practical, in terms of delay introduced, for all
noninteractive applications. Lastly, Section V-D establishes the
complementary nature of our protocol with other error handling
schemes. The rest of this section uses MPEG as an illustration,
though our technique can be applied to any dependent stream.

A. Buffer Requirements

As shown in Fig. 7(a), the server and client both require
a buffer of size , where maximum
length of a GOP, and number of GOPs, . Table II
gives GOP statistics for different MPEG traces (traces can be
found at ftp://ftp.cs.umn.edu/users/varadara/Traces. The data
has traces with GOP size 15 (30 frames/s) as well as GOP
size 12 (24 frames/s). Observe that the largest GOP size is
932 710 bits or 113 kbytes. Thus,

kbytes is quite viable.

B. Error Spreading Protocol

In the proposed layered permutation transmission order,
denotes the set of frames in layer , where

is the number of layers. As discussed earlier,is also the
size of the antichain decomposition. In the example of Fig. 5,

. A layer is critical if it contains anchor frames, on
which other frames depend. Let the set of Critical Layers
be Critical where . Hence,
Noncritical Critical . In Fig. 5,
Critical and Noncritical . Since the

TABLE II
GOP DATA INFORMATION FORMPEG TRACES

successful receipt of critical layers is important, the transmis-
sion order of layers is . In the proposed scheme,
frames in are scrambled using the function which is
generated by the callcalculatePermutation , whose
algorithmic details are given in Section III. is the number
of frames in and is the upper bound on network bursty loss
within a window of LDUs.

Some CM systems use TCP/IP for communication. However
it has been shown that CM applications based on TCP are un-
stable when the real time bandwidth requirements are larger than
the available bandwidth [21]. Thus, the proposed protocol uses
the UDP communication model, as in [19], [20], with feedback
for loss estimation. We assume that, the buffer size, and the
GOP pattern is known in advance by both client and server. This
can be obtained by an initial negotiation.

At the server side, a buffer of size is kept. Server permutes
frames (actually frame indices) based on current set of param-
eters , which is the upper bound on the bursty network loss
within , and then initiates transmission of the frames in the
buffer. Server changes the permutation scheme based on client’s
feedback for only the noncritical layers, and uses a fixed per-
mutation for critical layers. Frames in layers are
retransmitted upon a loss. Alternatively, a forward error correc-
tion mechanism may be used. So a feedback on the loss rate
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(in a window of ) for these frames can be avoided.
Frames of a critical layer are permuted using a function gener-
ated bycalculatePermutationfor and .
This ensures lower CLF for theCritical layers. In the case of
noncritical layers, the permutation scheme is changed only at
the start of the next buffer of frames. Thus, we ensuremin-
imal feedbackneeded toreduce CLF.

It takes to fill up the client’s
buffer (frame rate is typically 30 or 24 frames/s). The client
knows the GOP pattern of the transmitted frames (because of
initial negotiation). It keeps track of the previous window’s es-
timate of loss rate for all layers . It waits for
Cycle Timeand transmits the next estimated loss ratefor all
layers to the server. It sends feedback (ACK)
in a UDP packet. Note that ACK packet is also given a sequence
number so that out of order ACK packets will be ignored. The
server makes its decision based on the maximum sequence num-
bered ACK.

Denote as the actual bursty network loss and as the
estimated loss rate, in for the th window of

LDUs. Initially, when , the server assumes the average
case where . We use exponential averaging
to estimate the next loss. Suppose we are currently at theth
window, is determined by

(1)

We have picked , since we consider the current net-
work loss and the average past network loss to be equally impor-
tant. This value works reasonably well, as shown in Section VI.

Fig. 7(b) illustrates an example of how client and server in-
teract during transmission of layers . The
transmission of layers is easily seen as the server
does not require client feedback information(when our protocol
is used alone) and hence is not illustrated. In Fig. 7(b), there
is no indication of redundancy (retransmissions/error correcting
code). is the time when the sender sends theth per-
muted frame of layer on th buffer window. Note that it might
not be possible to transmit all frames (thus, all layers) be-
cause some frame slots have been used for retransmission of lost
frames from critical layers. The client sends back con-
taining the estimated for all layers in buffer window . By
the time server gets , it could be in the th buffer
window. So, it uses for the th buffer window. Fi-
nally, if is lost, its feedback information has not been
used for transmission of any subsequent buffer windows.Note:
For streams which have no dependency (like MJPEG), the above
protocol simplifies to just a scrambling of frames and estimating
loss rate for the whole window , details of which are given
in [10]. Also, as shown earlier our approach works for any en-
coding scheme, even though the illustrations are with MPEG.

C. Delay Factors

Delay factors typically include startup delay and individual
timing drifts (as defined in Section II-A). There are good rea-
sons to be concerned about the delay and/or drift incurred by
our scheme, especially for real time applications such as VoD
or Internet telephony. However, in this subsection we argue that

the scheme does not introduce new drifts and the only delay
it induces is the startup delay, which is small enough for most
practical purposes, except in the case of highly interactive ap-
plications. In Section VI-B, we shall also demonstrate our point
by experimentally showing that no new drifts are introduced.

As described above, the sender and receiver’s buffers are used
as a method to smooth out bursty network losses. In effect, we
only shift back the media playing time by a constant amount of
time (startup delay), i.e.,delay is not cumulative. Frames that
do not arrive within the buffer cycle time are considered to be
lost, which is typical in all real-time multimedia applications.
Our scheme clearly does not introduce new drift factors. It only
requires a startup delay timewhich could be estimated as

time to fill up buffer time to send frames in buffer

Notice that is not theadditionalamount of delay introduced
by our scheme. Any real-time transmission protocol would have
more or less the same delay formula. The additional delay comes
from the extra buffer size. However, the overall startup delay is
still very much viable, even when there are inter-frame depen-
dencies. As an example, let us revisit Table II. Suppose we use
a buffer of two GOPs with 15 frames per GOP. Further assume
that our bandwidth is 10 Mb/s and ms, then the startup
delay we need even for the largest GOP (Star Wars, 932 710 bits)
is

s.

The number for four GOPs is roughly doubled, i.e., 2.4 s, which
is clearly viable for most purposes. For audio data, the startup
delay is clearly a lot less and thus it is not of concern here.

Notice that we do not use the buffer for prefetching and/or
smoothing rates, etc. These mechanisms can be used in conjunc-
tion with our scheme, the manner of which is discussed in the
next section. It is conceivable that we need finer control of the
startup delay time. This would require bandwidth/delay estima-
tion and could be part of the negotiation phase in our scheme,
whose discussion is omitted in this paper.

D. Error Spreading as an Orthogonal Dimension

As seen from the earlier sections, we have parameterized
the different characteristics of theerror spreading protocol.
Error spreading itself does not require any bandwidth/delay
estimation and uses only loss rate estimation as shown
above. Hence, it is possible to build anerror spreading
module which uses a control channel for loss rate estima-
tion, independent of any other error handling protocol [refer
Fig. 7(a)]. It is clear that any error handling protocol using
retransmission or forward error correcting codes, e.g., [3],
[15], [25], [2], [16], or error concealment protocol [8], only
decreases theCritical set and increases theNoncritical set.
Thus, knowing the frame reconstruction mechanism avail-
able on the client side and/or the retransmission protocol
only fixes the number of critical layers. To incorporate the
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TABLE III
8 FRAMES ORDERING OF IBO AND ONE OF

THE CASES OFOUR SCRAMBLED ORDER

error spreading technique into other error handling protocols,
the latter schemes have to implement the following features:

• Error handling protocol now works with GOPs
instead of 1, i.e., the start up delay increases to

where is the number of GOPs dis-
played in 1 s.

• The sender needs to pick up the frames to be trans-
mitted from the error spreading module’s buffer.

• The receiver informs the client side error spreading
module of the received frames in a buffer of LDUs.

• The transmission decision and schedule for a frame in
the error handling protocol (i.e., for frames in
MPEG) is now done for frames in each layer .

To investigate the feasibility of implementing the above
features, the error spreading scheme was implemented on the
Berkeley Continuous Media Toolkit(CMT) [20]. A description
on CMT and the changes that was made to it to incorporate our
scheme is given in [11]. Frame priority in CMT is calculated
in a manner similar to our layered scheme. Allframes have
highest priority, frames are lower, and frames are lowest.
frames and frames might have to be retransmitted if they are
lost and time still permits. The set of frames are prioritized
based on the Inverse Binary Order or IBO (which was quoted
in CMT code as by Daishi Harada), example in Table III.
Note that frame dropping can potentially occur at any of the
previously mentioned objects, if the object decided it cannot
transmit the given frame in the estimated available resources or
if a frame playback deadline has elapsed.

We changed IBO to our error spreading algorithm presented
earlier. Also, CMT provides a handle onto the buffer size, pa-
rameter , by allowing the user to vary the cycle time of a
bunch of frames. Losses of frames occur only in the tail of
the set of frames because of the way CMT’s protocol works.
It sends a bunch of frames at the head of the buffer (which has

and frames in that order), the number of which depends
on its estimated parameters. As can be seen in Table III, in a
pathological network scenario wherein the number of frames
lost is greater than half the number offrames sent, IBO per-
formance starts decreasing, while in our scheme we still provide
better CLF. Further, in our layered orders, we use our ordering
mechanism among theand frames ensuring more number of
consecutive GOPs are received at the client in a highly lossy net-
work condition. As shown earlier, our approach is not restricted
to any encoding (not just MPEG). We have provided the details
in Section IV. Thus our model and approach can be extended
to any type of continuous media and its delivery, reducing CLF
even in a pathological network scenario.

TABLE IV
SUMMARY DATA FOR THE VIDEO CLIPS

VI. EXPERIMENTAL EVALUATION

The following two sections present the evaluation of our
scheme in two scenarios. In Section VI-A, we present two
cases of experiments done over streams with no inter-frame
dependency. In one case the protocol has been implemented
and tested over a long haul network. In the second case, we use
a data set extracted from a real-time application such asInternet
Phoneand simulate our protocol. We show the reduction in
CLF in both the cases. Our protocol has smoothed out CLF
to be within the range of perceptually acceptable tolerance.
Also, it adapts quite well with abnormality in network loss
pattern. Moreover,almost allCLF values are within the range
of perceptual tolerance (see Section II-A). In Section VI-C, we
present the results of a detailed simulation-based evaluation of
our protocol using the layered permutation transmission order
for MPEG described in Section IV-B, and compare it against
the usual MPEG transmission model.

A. Experiments

1) Video Experiment: Media Delivery Over a Long Haul
Network: We have conducted experiments of sending two
MJPEG video clips over LAN and WAN. Due to limited space,
only the result of WAN is shown here. However, the behavior
of our protocol is the same in both cases. We transfered data
from rawana.cs.umn.edu, a UltraSparc in the Computer Science
department, University of Minnesota to lombok.cs.uwm.edu,
a SunSparc in the Computer Science department, University
of Wisconsin, Milwaukee. The experiment was conducted at
9:45 am when network traffic is expected to be average. Both
clips have resolution 512 384. Other information about the
clips is summarized in Table IV.

Our buffer window is of size 50. Three times “traceroute” told
us that the packets typically go through 14 hops in between. A
sample traceroute session is as follows.

1 eecscix.router.umn.edu (160.94.148.264) 2 ms 1 ms 1 ms

2 tc8x.router.umn.edu (128.101.192.254) 23 ms 4 ms 3 ms

3 tc0x.router.umn.edu (128.101.120.254) 6 ms 1 ms 1 ms

4 t3-gw.mixnet.net (198.174.96.5) 1 ms 1 ms 1 ms

5 border5-hssi1-0.Chicago.cw.net (204.70.186.5) 11 ms 11 ms 29 ms

6 core2-fddi-0.Chicago.cw.net (204.70.185.49) 11 ms 11 ms 11 ms

7 core2-hssi-3.WillowSprings.cw.net (204.70.1.225) 13 ms 13 ms 15 ms

8 core3.WillowSprings.cw.net (204.70.4.25) 310 ms 52 ms 123 ms

9 * ameritech-nap.WillowSprings.cw.net (204.70.1.198) 245 ms 35 ms

10 aads.nap.net (198.32.130.39) 18 ms 18 ms 21 ms

11 r-milwaukee-hub-a9-0-21.wiscnet.net (207.112.247.5) 25 ms 22 ms 27 ms

12 205.213.126.39 (205.213.126.39) 19 ms 20 ms 23 ms

13 miller.cs.uwm.edu (129.89.139.22) 24 ms 25 ms 21 ms

14 lombok.cs.uwm.edu (129.89.142.52) 24 ms * 25 ms
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Fig. 8. Performance of our protocol when transmitting video over long-haul
network.

Fig. 9. Performance of our protocol for a real-time application such as Internet
Phone.

Fig. 8 shows the result. As can be seen from the figure, our
scheme does quite well in smoothing network consecutive
losses. Due to space constraints, we show the performance
with respect to clip 1. Similar resultes were obtained for clip 2.
Most of the time CLF is well below and also within tolerable
perceptual limits (see Section II-A).

B. Experiment: Using Data From a Real Time Application
Like Internet Phone

The data was collected for anInternet Voice or
Voice on Networks (VON) application. The server is
textitvermouth.ee.umanitoba.ca (Canada) and the client is
rawana.cs.umn.edu (Minnesota, USA).vermouthand rawana
are both SUN UltraSparc 1, running Solaris V2.6 and V2.5
respectively. Each host is on a 10 Mb/s Ethernet (LAN). The
transmission is over the Internet and the data set was collected
on a Saturday, from 10 am to 2 pm. The data was collected for
voice packets of sizes 160 and 480 bytes. We provide the graphs
for voice packets of size 160 bytes while the performance of
the other is similar.

Fig. 10. Drift factors.

Fig. 11. Two-state Markov model of network loss.

As can be seen from Fig. 9, the actual CLFs due to network
losses are varying while the CLF based on our protocol is always
lower (in this case , implying no consecutive losses).

As we have mentioned earlier, our scheme does not induce
new drifts. To illustrate that point, we plotted the drifts (ADF,
CDF) of the regular scheme versus our scheme, as shown in
Fig. 10. As can be seen, there are no significant changes in drifts.
Note that, timing drifts occur because of delay of frames deliv-
ered to the client from the network and/or the ability of clients
to schedule events at fine time slots, depending on operating
system load, etc. Timing drifts arising due to network delays
translates to losses if drifts are longer, and hence is taken care
of in our scheme. Drifts due to load at the client side can be
controlled if the client has the ability to schedule events in a
fine grained manner, and is not addressed in this paper.

C. Simulation

1) Simulation Model:Network loss pattern is modeled by a
two-state Markov model as shown in Fig. 11.

The two states aregood (successful) state andbad (lossy)
state. Since networks loose packets in burst, once in the good
state, the model remains there with probability . Once
it switches to the bad state with probability , it
remains there with probability . It switches back to the
good state with probability . Essentially, the regular
MPEG transmission and our transmission differ only in the
order of frames being sent in the sender’s buffer window of

LDUs. In this experiment, the data was taken
from the MPEG trace of Jurassic Park, which can be obtained
from ftp://ftp.cs.umn.edu/users/varadara/Traces. Jurassic Park
MPEG clip has GOPs of frames each. Note that
the simulation was conducted for fixed bandwidth (at the
specified peak) and a fixed delay. The only variations are the
probabilities of the network packet losses ( and ),
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TABLE V
SUMMARY OF SIMULATION RESULTS

Fig. 12. Experiments on impact of network losses.

which are random derivates drawn from a uniform distribution
in the interval . The network is initially in the good state.

As bandwidth, network loss, and buffer size are the main
parameters which affect CLF, we measured the impact of these
parameters separately. A set of other parameters are chosen to be
at their typical values. Frames are broken up into packets of size
packetSize kbytes. Round trip delay time is 23 ms. Proba-
bility that the network stays in the good state is 0.92. We
summarize our simulation result in Table V.

2) Impact of Network Loss on CLF:In our model, network
loss is determined by the probability introduced earlier.
The closer to is, the worse the network loss is. In the first
two experiments,bandwidthis fixed at 1.2 Mb/s, buffer size is

GOPs, and is either 0.6 or 0.7. Fig. 12 shows the
results for while Table V shows the comparison. As
can be seen, the error spreading scheme has been able to reduce
both the mean and deviation of CLF over 100 buffer windows.
The net effect is that better perceptual quality was achieved. The
small reduction when is rather surprising. However,
due to the predictive nature of Eq. (1), it is expected that the
protocol will occasionally not predict very accurately the next
window’s network loss. This phenomenon must happen to all
protocols that use equations similar to (1), such as TCP.

3) Impact of Available Bandwidth on CLF:The next two
experiments show that our scheme also perform better with dif-
ferent available bandwidth. Her, buffer size is kept at two GOPs,

is 0.6, and bandwidth is varied from 700 kb/s to 1.2 Mb/s.
Fig. 13 shows the results of the experiment with bandwidth
700 kb/s while Table V shows the comparison. Just as in the
previous case, both the mean and standard deviation of CLF are
improved. Moreover, our scheme often keeps CLF at or below

Fig. 13. Experiments on impact of available bandwidth.

Fig. 14. Experiments on impact of buffer size.

2 which is the threshold for a perceptually acceptable video
stream.

4) Impact of Buffer Size and Startup Delay on CLF:In the
last two experiments, we vary —the number of GOPs in the
server’s buffer. is either 2 or 7, i.e., the initial delay time is
either 1 or 3.5 s. Both values are acceptable in most practical
situations. Network loss probability and bandwidth
is 1.2 Mb/s. Results of the experiment with is presented
in Fig. 14 while Table V shows the comparison. Again, both
mean and deviation of CLF are better. This consistency proves a
strong point that error spreading scales well in various scenarios.

5) Impact of Nonbursty Network Losses on CLF:When our
fundamental assumption fails, namely the network losses are not
bursty, it is natural to ask how our scheme behaves. In principle,
we could observe a nonbursty network loss pattern, which in-
creases CLFs when permutation scheme is applied.

The protocol can be easily modified to take into account this
scenario, by measuring the burstiness of network losses. As soon
as the predicted loss falls below a certain threshold of burstiness,
no permutation needs to be applied. This slight modification
does not lie on our line of reasoning, thus although it is easily
implemented, we omit it in our protocol description.

In this section we measure our permutation scheme’s perfor-
mancewithout adjusting to the bursty level of network loss. We
conducted two experiments when is 0.1 and 0.3. Low
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Fig. 15. Experiments on impact of nonbursty network loss.

is equivalent to low burstiness in network loss. Fig. 15 shows the
case and has similar results. The exper-
iment show that statistically the scrambling scheme is definitely
not worse than its nonscrambling counterpart even if the main
assumption fails.

VII. CONCLUSION

In this paper, we have addressed the problem of handling
bursty losses in continuous media transmission. We formulated
the problem in terms of a number of parameters including
user QoS requirements, sender resource availability, and
network loss behavior. We introduced the concept ofError
Spreading which is a transformation technique that takes
the input sequence of packets and permutes them before
transmission. We then determined the bounds on achievable
CLF using this kind of techniques for independent streams
like MJPEG in a deterministic scenario. We also provided an
algorithm to generate an appropriate permutation satisfying the
above bounds. Next, we extended this idea to handle streams
with inter-frame dependencies such as MPEG. Streams with
inter-frame dependencies were modeled as partially ordered
sets and the independent stream was shown to be just a special
case of this. In addition, we presented a protocol for a nonde-
terministic network scenario and showed the orthogonal nature
of our scheme with other CM error handling protocols. Finally,
we validated the effectiveness of our scheme through a set
of simulations and experiments over the Internet. The results
indicated that the scheme makes the transmitted streams more
acceptable from a perceptual viewpoint [27].

APPENDIX

In this Appendix, we shall state the two Lemmas concerning
two main cases of Theorem 3.2. Lemma A.1 presents the case
where . A formal proof of this lemma is provided.
Lemma A.2 deals with the case where . Due
to lack of space, this lemma is stated without proof. Interested
readers are referred to [11] for more details.

Lemma A.1: If then
Proof: Since , we have . So, to prove

it is sufficient to specify a permutationon

so that . To avoid possible confusion, we would like to
point out that for any specifies the position ofin
the permuted sequence whereis sent to, while is the number
at position in one line notation of .

We consider two cases based on the parity ofas follows.

• Case 1: is odd
Let

. Since , we have . Moreover,
, hence . We now con-

struct a permutation such that . Let be defined
as follows.

(2)

We first need to prove that is indeed a permutation.
As generates the group of in-
tegers modulo . Thus the
sets and

are identical. So (2) defines a valid .
Secondly, we need show that . Let

in one line notation. If
then there existsand such thateither

and both and belong to the same
sliding window for some or

and both and belong to the same
sliding window for some .

Note that by definition of , we have
and , thus,

(3)

— If and both and belong to the same
for some , then we must have

. Moreover, and (3) imply
is either or . As stated earlier, ,
so , making impossible.

— Otherwise, suppose and both
and belong to the same sliding window for
some . Notice that we must have

for both and to be in . Moreover,
and (3) imply that is either

or . So , and similar to
the previous case, this makes impossible

In sum, we have just shown that , so
. Notice that the choice of could have been any

integer between and , as long as .
In particular, clearly works. However, we have
chosen to be the minimum of these because we would
like the permuted sequence to be spread out in a “better
manner” (see [11] for explanations).

• Case 2: is even
If then we can
just use exactly the same permutation as whenis odd.
If the set is empty, let , so . As the
previous case, we seek a permutationso that .
Let be defined as follows.

(4)
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If is even, then , namely all the even
numbers will be placed from the first position to the

th position in increasing order. When is odd,
, so all the odd numbers will

be placed from the st position to the th
position. It is clear from the above observation thatis a
proper permutation on.
We are left to prove that . Write

in one line notation. Firstly, notice
that for any , we have

and .
So,

(5)

Similar to case 1, if then we consider two sub-
cases:

— If and both and belong to the
same for some then we must
have . Moreover, since and

, it must be the case that is odd and is even.
Combining with (5), we have

This makes impossible.
— Otherwise, if and both and

belong to the same for some ,
then we must have for both and
to be in . By (4), and , so
it must be the case that and . Thus,

, contradiction !
Lemma A.2: If then

Proof: See [11] for details. Although the previous lemma
gives the intuition behind our result, the proof of this lemma is
considerably more complex.

Example A.3:Let , then , and
.

Example A.4:Let , then , and
.
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