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Abstract— In an effort to differentiate service quality, service
providers have resorted to employing Content Distribution Net-
works (CDNs) over the Internet. CDNs deploy geographically
distributed proxy servers which manage content on behalf of the
service provider’s servers for better performance and enhanced
availability.

In this paper we explore the proxy placement problem for
content distribution over the Internet. Its goal is to strategically
place a number of proxies in the network to optimize certain
criteria which improve performance of proxies. We motivate the
various necessary factors and constraints that need to be taken
into account for a good placement of proxies over the Internet
which reflect real world scenario more accurately and which we
claim hitherto has not been completely addressed. We introduce
a novel concept of host coverage characterizing every Autonomous
Systems (AS) and use this stable, coarse grained measure as a
long-term estimate of the load being serviced by the proxy system.
We then pose an optimal formulation of the proxy placement
problem taking into consideration all the relevant factors. We
propose a couple of proxy placement algorithms that solve the
above problem and analyze their behavior. Finally we present the
performance of those algorithms against the optimal solution and
other schemes proposed in literature. We also study the stability
of the proposed algorithms through a variety of experiments.

Keyword: Proxy Placement, Coverage, Internet, Content Dis-
tribution Network (CDN)

I. INTRODUCTION

There has been an explosive growth in the services offered
by different enterprises and commercial organizations over the
Internet in the past few years. This has led to the emergence of
a wide variety of applications with differing quality of service
(QoS) needs. In an effort to differentiate their service quality,
service providers have resorted to employing the services
of Content Distribution Networks (CDNs) over the Internet.
CDNs are geographically distributed proxy servers which
manage content on behalf of the service provider’s servers for
better performance and enhanced availability. These proxies
serve as proactive client caches reducing service response time
by being closer to the client and balancing the server workload.
There has been an increasing trend for content distribution to
be out-sourced to distribution networks like Akamai, on behalf
of traditional server hosting companies. The task of such a
service is to redirect a user request in a manner that improves
service time for different clients. If done well, this can lead to
cost reduction, by requiring fewer proxies, and improved client
response time through better coverage - both of which are
beneficial from the service provider’s viewpoint. In this paper
we study the proxy placement problem for content distribution,
whose goal is to strategically place a number of proxies in
the network to optimize certain criteria. Broadly speaking,
an effective and realistic proxy placement should consider (i)
constraints imposed by Internet routing policies (ii) the ability
of proxies to handle dynamically changing content and (iii)
the demand or load to be serviced by the proxies.

We handle the placement of proxies at the level of Au-
tonomous Systems (AS), just as in [1], [2]. The reasoning
being that though there are many ASs on the Internet, they
are far less than the actual number of hosts and hence makes
the problem more tractable. But physical connectivity between
ASs does not necessarily imply logical connectivity: adjacent
ASs do not always route traffic between each other. This is due
to constraints imposed by routing policies in BGP, an inter-
domain routing protocol on the Internet. Most work on proxy
placement [1], [3]–[6] neglect this constraint on connectivity.
The work in [2] is a notable exception to this. Though in
that work they consider content on all the proxies as identical,
which is easier to analyze but undesirable, since it increases
storage overheads and limits the use of smart content/cache
servicing schemes based on the current request load once
the placement is done. It was observed in [5] that while
typical tree based algorithms using mechanisms of hierarchical
placement performed better than random placement, they do
not work as well as algorithms for general graphs. Thus, in
this formulation we characterize the cost of communication
structure amongst proxies, but we do not restrict them to
predefined specific topologies or structures (as in [1]). In the
context of web servers, [5] observed that placement algorithms
which incorporate client distance and request rate in their
decisions perform 2-5 times better than workload-oblivious
algorithms. A typical approach to capture demand is to use
some request trace data e.g. web logs. We believe that this
information is ephemeral and too detailed to be used as a basis
for a long-term placement problem. The challenge then is to be
able to get a longer-term load measure in the Internet, wherein
workload information is always likely to be imperfect. We
introduce a novel concept of host coverage which is a coarse
indicator of load associated with an AS and provide techniques
to infer it. For experimental validation of the coverage metric
through an Internet study, intuition behind the proposed proxy
placement model and more experimental results, readers are
directed to the longer version of this paper in [7].

This paper is organized as follows: Section II introduces
Autonomous Systems, and AS graph construction. It also
explain how to infer host coverage information from the AS
graph. Section III formulates the Optimal Proxy Placement
problem which takes into consideration all the various con-
straints and factors listed before and their tradeoffs. Section IV
presents a couple of heuristics to solve this problem, and
analyzes them. Section V describes simulations evaluating
the heuristics, comparing them with the optimal solution and
other simple simple algorithms, and their sensitivity to small
perturbations of input data.
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II. INFERRING AS-RELATED DATA

In this section we provide mechanisms to extract the data
required for the proxy placement problem formulation. We
show how the AS graph is inferred and distance between every
pair of ASs are computed (�II-A). We then address the issue
of inferring host coverage (�II-B).

A. AS Graph Inference and Distance matrix computation

The Internet is a collection of ASs each having different
authority and routing policies depending on the organization
they belong to. An AS typically has detailed information about
its internal topology and limited connectivity information
about other ASs. BGP is a distance vector protocol that
constructs paths by successfully propagating route announce-
ment/withdrawal updates between adjacent BGP speaking
routers (internally maintained in a BGP routing table), through
peering sessions. The update announcement or acceptance be-
tween neighboring ASs are constrained by selective export or
import policies, depending on different commercial contractual
business agreements amongst the Internet service Providers
(ISP) managing the corresponding ASs [8], [9].

Lot of work has been done on inferring AS-level Internet
topology from BGP routing table information and through
other mechanisms like intelligent probing etc. ( [10], [11]). In
there they list out mechanisms in which the AS graph, which
is a logical map of the Internet, is constructed. For the purpose
of this work we assume the Internet AS topology information
is known a priori and is collected through one of the these
mechanisms.

Physical connectivity between AS domains do not imply
reachability – if Node A has neighbor B, which in turn has
neighbor C, then it is not necessarily true that A can reach
C through B. For a proxy placement, one needs to contend
with these policies and the relationships between ASs [9].
As a consequence of this the AS graph collected before is
a directed graphs. To handle this problem, the authors in [9]
infer such AS relationships and then use these relationships to
construct the logical Internet graph in [12]. Finally in [2], they
use a Modified Dijkstra algorithm to find the minimum AS hop
count distance from every AS to a proxy placed in a particular
AS � i.e shortest distance from every AS to a proxy in AS �.
We can then extend this algorithm in a straight forward manner
to run � (= total number of ASs) times or use a similarly
modified (all pair shortest path) Warshall-Floyd algorithm to
construct the complete distance matrix. This distance matrix is
not symmetric in nature as also does not satisfy the triangle in-
equality because, any such correlations are effectively broken
by different BGP related policies. In effect distance matrix is
non-metric. The effect of BGP policies is, however, limited to
the distance matrix computation (every entry in it correspond
to the shortest distance between the corresponding ASs) with
no other implications from the point of view of this paper.

B. Host Coverage Inference

It has been shown that placement algorithms which in-
corporate workload/demand information in their decisions
outperform those that are oblivious to such information [5].
In the context of proxy web servers or DNS servers, the
typical approach taken in estimating client demand is to
cluster different ASs that are topologically close together
using BGP information. Then by analyzing web server logs or
traces, extracting the client IPs and associating them with the
corresponding cluster, aggregated demands of the clusters (of

ASs) are made ( [1], [13]). While this approach has its merits,
from the point of view of a content service provider (who
wants to establish such a proxy service), there are some issues
and problems to contend with: 1) A new service provider
does not have access to client request traces [2]. 2) The
client request traces so logged is very specific information
relating to client interests and could be a transient, short-term
phenomenon useful for caching/request routing schemes but
not very relevant for a permanent proxy placement scheme.

To address these issues we take the following approach.
We define a more long term coarse load measure called
host coverage, which is indicative of a potential load request
pattern. We determine host coverage based on the IP Address
Space distribution amongst the different ASs. Formally we
define the load �� of AS � as the fraction of IP Address Space
originating from an AS with respect to overall routable IP
space.

�� �
IP address space originating from ���

Overall rout-able IP Space

Algorithm 1 computeHostCoverage
Input: BGP routing table entries ���� � ������ ���� �	
�,

where ���� is the prefix, ��� is the mask length and
and �	
 is the originating AS: the last AS number
in the AS list

Output: �� , �� � � � � where � is the number of ASs in �

Define: ���� � ���� iff �������� is a prefix of ��������
or �������� � �������� and ������� � �������.

1. Construct the Prefix Tree � such that each node of the tree
contains an entry of �:
1.1 Create a dummy root with entry ��������������� ��
1.2 Construct � so that for every subtree � � rooted at ����,

every child ���� � � � satisfies ���� � ����,
2. Process the tree � in post-order:

2.1 For a leaf node with entry ����,
set ��������� � ��������� � ������������

2.2 For an interior node with entry ����,
set ��������� � ��������� � ������������

�
�

�� 	����is child of ���� ���������

2.3 For the root of � ,
set �� � ��� �

�
�� 	����is child of root ���������

3. Set �� � � � �� �� �

�

����
�

Algorithm 1 computeHostCoverage illustrates the method
through which �� can be computed. Each node routes to a
given IP address using the BGP entry which has the longest
prefix match, and for all practical purpose that address can be
associated with the originating AS of that BGP entry. Since
IP addresses are not assigned in a hierarchical manner, any
originating AS an be found for multiple prefixes in the BGP
table. We construct the prefix tree � wherein every node is a
specific (prefix, mask length, originating AS) entry from the
BGP table. We add a dummy root which spans the full ���

IP address space. We process the tree bottom up so that we
do not double count any specific IP address to be associated
with an AS. For any node in � and its associated AS, the
IP addresses specifically originating from it are the complete
space it spans (based on the mask length), excluding all the
IP spaces originating from its children. Trivially the dummy
route node (with a dummy AS 0) finally holds the complete
set of IP addresses which cannot be routed using the given
BGP table information, termed black holes [14] plus the
unused/unassigned IP address spaces. Finally we normalize
each ��� �� � � � � with respect to the total routable IP
address space, where � is the total number of ASs. We can
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easily modify this algorithm to exclude reserved IP address
subspaces.

In reality, a single IP address may represent whole other
intranets hidden behind it using techniques like NAT (Network
Address Translator) [15]. Some IP addresses might be used
only temporarily or not assigned. Also we do not discriminate
between routers and end hosts in an AS. Since we are looking
at only a coarse measure of the load, we believe using the
IP address space in this manner is still reasonable. Further we
design heuristics (in section IV) such that the actual placement
is insensitive to perturbations of the load.

III. OPTIMAL PROXY PLACEMENT

Setting up a proxy involves two components: proxy place-
ment, and proxy service region distribution. Proxy placement
deals with placing the different proxies in different ASs.
Service region distribution determines set of ASes that is
served by a given proxy. The optimization output variables
are �� � represent the two components listed here. In this
formulation we not only account for costs arising because
of services provided directly from proxies to different ASs,
but also costs between different proxies as this would have
implications for content cache management once proxies are
set up. We first state the problem informally.

Vble. Definition
� Set of ASs, � � ��� �� � � � � ��
� Set of placed Proxies, � � � � ��� � �
� ������� � � �� � � �; ���� � distance from AS � to �
� Normalized host coverage Vector, � x � matrix,

� � ���� ��� � � � � ����
��

���
�� � �

� � x � matrix, � � ������� � � � � � � � , where
���� � � if proxy � is placed in AS �, else �.
Note that � � ���	� such that ���� � ��

	 � x � matrix,	 � �	����� � � � � � � � , where
	��� � � if AS � is serviced by proxy �, else �.


� �� Work done for requests originating from ASs to
corresponding proxies


��� Work done amongst proxies to service different
requests

� � � � � �: probability of requests from ASs directly
serviced by the corr. proxies w/o any redirections.


��� Overall work done in � ASs using � proxies

TABLE I
VARIABLES AND DEFINITIONS

Optimal Proxy Placement Formulation (OPPF):
Objective Reduce the overall work done by the set of �
proxies to service requests from all the different � ASs.

Considerations
� Load as a result of hosts covered by different ASs
� Work done between a proxy and an AS for every

request originating from the AS
� Work done amongst the different proxies. This is the

cost for content management.
Constraints
placement: At most one proxy placed in any AS
service: Each AS serviced by exactly one proxy

Output Place at most � proxies in � potential AS sites
and assign every AS to be serviced by one of the proxies.

Assumption All hosts are equally likely to originate re-
quests and ASs are only as important as their host
coverage.

The Optimal Proxy Placement Formulation (OPPF) is a
mixed-integer programming problem with a non-linear ob-

jective function. The variables used and their definitions are
provided in table I.

Minimize
���� � �� �� � ��� ������� (1)

where
�� �� �

�

���

��
�

���

����
�

���

���� �	���

���� �
�

����
�
�

���

�

���

����
�

���

�

	��

�	���	��	 (2)

Subject to
���� � ���� � ��� ��� �
 � � � �� � � (3)�

���

���� � �� �� � � (4)

�

���

���� � �� �
 � � (5)

�

���

���� � �� �
 � � (6)

The objective is to minimize the expected work done by the
proxy setup in serving a request. The two components are the
work done by proxies servicing the requests from different ASs
�� �� and work done amongst the different proxies ���� .
�� �� indicates the average distance traveled by requests
from the assigned proxies to different ASs, normalized by
the host coverage �. ���� indicates the average work done
amongst other proxies to be able to service content, when
proxies in charge of different ASs cannot directly service
the request. We represent this work as the average distance
between all pair of proxies. Thus distance between �����
and ����� placed in ��� and ��	 respectively is given
by ������	���	��	. �, an input parameter to the formulation,
indicates the overall probability of content being serviced
by proxies directly without any redirections amongst proxies.
� 	 � implies highly available proxies that have almost all
the content and for all practical purpose can be considered as
independent server replicas. We do not have consider costs
amongst the different proxies in that case. The work �� �� is
always done, but with probability ����� there is an additional
work done of ���� . An important point is that the objective
function assigns weights to different ASs proportional to the
host coverage ��. If the proxy service provider has additional
information so that certain ASs are more important than
others, then the objective function could be easily changed for
suitable other weights; e.g., if only a subset of ASs are to be
considered for proxy placement, the ��’s can be renormalized
for those ASs. Another way to chose these weights is to use
geographical information of ASs, to determine the focus of
the service and the likely demand for the service.

Constraint 5 is the placement constraint while constraint 6 is
the service constraint. Notice that in this formulation, multiple
ASs can be serviced by a single proxy and the optimization
could result in less than � proxies being placed if adding
more proxies does not help in decreasing the overall cost.

This problem is essentially a variant of the K-Median
Problem and has been shown to be NP-hard [16]. The metric
versions of this problem, wherein the costs are non-negative,
symmetric and satisfies the triangle inequality, has been stud-
ied in detail and a slew of constant-factor (with reference to
optimal values) polynomial time approximations have been
proposed. It is important to note that the distance metric in our
case is non-metric. Thus the proxy placement problem, which
we have posed here, is a non-metric uncapacitated K-Median
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problem and is NP Hard. To the best of our knowledge, we do
not know of existing graph theoretic solutions that are directly
applicable to this problem.

IV. HEURISTICS

In this section we propose two heuristics: greedy exchange
(�IV-A) and greedy coverage (�IV-B). We then analyze the
properties of the heuristics (�IV-C).

A. Greedy Exchange

Algorithm 2 greedy-exchangeCompute
Input : �, �, � with�� � � �, �, �, �
Output : � with ��� � �.

0. � � �, �� �

1. Compute �� using the first proxy in AS � for which
�
�

� is minimum, �� � � .
Set � � � � � and the 	
 � appropriately.

2. while � � � do
2.1 Compute ���� using equation (8)
2.2 ��� � ���� 	 ��

2.3 if ��� � �

then break out of loop: no benefit adding any more.
2.4 Pick the cost effective AS � which gave the

minimum in the above computed ����

2.5 � � � � �
2.6 Update 	 and � variables appropriately.
2.7 �� ���

3. Let � � 
��
 ��
 � � � 
 ������
 ��������
 � � � 
 ����� be
the order in which the ASs were added into the proxy list
in steps 1 and 2.

4. Considering the last � ASs added to the proxy list
for each � � 
������
 ��������
 � � � 
 ����� � �

for each � � � 	 �
if swapping � and �, reduces overall cost,
then swap them: � � � 	 
�� � 
��.

The greedy algorithm starts by placing one proxy, and then
iteratively places one additional proxy at a time until all �
proxies have been placed. Let the current set of proxies already
placed be � with ��� � � at the beginning of an iteration (i.e
� proxies have been placed). Define the cost of iteration ���
as

�
�
��� ��� ������ � ��� ��������������� (7)

���� � ������
���� �� � � � �� (8)

where � is as specified in equation 2 of section III, except
that it uses the distance matrix 	 instead. At each iteration,
we compute the 	� 
 variables needed for cost computation as
follows:

� For the 	, when AS � is added to to � in ��� iteration,
set 	��� � �.

� For the 
 variable, we assign it so that �� � � find the
closest proxy � � � with 	��� � � (placed in AS ), such
that ���� is minimum.

Now �
�
��� is the cost of the placement of choosing � as the

new proxy and ���� searches this over all unchosen proxy i.e
�� � � � � and picks the cheapest one.This cost represents
the cheapest cost of placing one more proxy. Let also define
benefit of placing this additional proxy as ���� � ���� � ��.

The greedy exchange process is listed in algorithm 2. The
steps 1, 2 indicates the greedy process, while step 3, 4 is the
exchange process. The greedy process is simply to keep adding
proxies one at a time until we reach � or there is no more
benefit in adding one. Then is the exchange process, we look
at the last � ASs added to the proxy list, where � 
 � � ���.

If by exchanging one of those ASs with other ASs which are
not selected, we get a lower cost, we then exchange. Higher
values for � increases the running time of the algorithm, but
gives better placement. Typically small, constant values of �,
say 2 or 3 or 4, gives close to optimal value for most of the
experiments. Since we are dealing with an offline algorithm
where running time is not very critical we do not show the
results of those experiment in this paper.

B. Greedy Coverage

Algorithm 3 greedy-coverageCompute
Input : �, �, � with�� � � �, �, �
Output : � with ��� � �.

0. ����� �, �� �, ����� �����
1. while � � � and ���� � ����� do

1.1 ����� � �, ����� � �

1.2 while ����� �
�

�
and ���� � ����� do

1.2.1 find an AS � � � 	 ���� such that it is
the minimum distance tosome AS � � �����
If � 	 ���� � � set ���� � ����,
then break out of the loop.
If ����� � �, pick any AS � � � 	 ����

1.2.2 ����� � ����� � �
1.2.3 ����� ���� � �
1.2.4 ����� � ����� � ��
1.2.5 ������	���� �

1.3 �� �� �

2. while � � ������	��� do
2.1 do step 1 of algorithm 2 using the complete AS set

as ����� so as to find (by setting 	 variable
appropriately) a proxy among ����� ASs with
cheapest cost and � variable so that all � � �����
are serviced by that proxy.

In the previous greedy exchange approach, we consider
both the dimensions of host coverage and distances (between
AS and proxy as well as amongst proxies) simultaneously
(Algorithm 2). In the greedy coverage approach, we deal
with the host coverage dimension first and then deal with the
distances. We first partition the � ASs into � zones in such a
manner so as to equalize the total host coverage of each zone.
In each zone, the way we pick ASs is similar to any spanning
tree algorithm. Next we place a proxy in each of the � zones
so that the cost is minimized in each of the zone. The cost
is computed as before, except that we consider each proxy to
be closest to ASs in its own zone. This process is listed in
algorithm 3. Note that

��

��� �� � �. We call this approach
greedy coverage.

C. Analysis of Heuristics

The greedy-exchange heuristic is iterative. Proxy service
providers can add proxies iteratively based on the growth in
their demand. Of course the greedy-exchange heuristics is not
guaranteed to be optimal — we cannot say that for � � �
being the proxy set computed through the greedy-exchange
process and any �� � � such that ���� � ���,

�� �� � ��� ������� 
�� ���
� ��� ���������

What we hope to do is by controlling the parameters (with
small values) of Greedy Exchange (�), we get close to the
optimal. There is a nice property of the greedy-exchange
heuristic, summarized in lemma 4.1. Basically the greedy
exchange heuristic exhibits a property of local optimum cost
value AS as a place for a proxy in the current iteration than
from other unselected ASs for large �. Obviously, large �
increases the time complexity of the algorithm.
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Lemma 4.1: If � � � � ��� � � is the set of proxies
computed by greedy-exchange algorithm 2 and for any other
set �� � � � ���� � � such that �� ���� � � � �� �, then

�� �� � ��� ������� ��� ��� � ��� ���������

Proof: The proof is straight forward. Since � � � � �,
then step 4 of algorithm 2, simply loops through all � � � and
� � � � � and swaps if there is an unselected proxy which
will result in a lower cost. Thus for any other proxy set ��

which has �� � common elements with � , it can never have
that additional proxy � found in it and not in � which will
result in a lower cost (else it would have been exchanged).

An important point to note is that by Lemma 4.1, when
� � � i.e., only one proxy to be placed, the greedy-exchange
heuristic is optimal. By following the algorithm 3, it is also
clear that the greedy coverage is also optimal when � � �.

V. EXPERIMENTAL EVALUATION

In this section we evaluate our proposed heuristic algo-
rithms: greedy exchange and greedy coverage. All the exper-
iments were run on a SGI Origin 3800 using a single 500
MHz R14000 processor and 1 GB memory. All the code has
been written in Matlab Version 6.0. In the discussion below,
the term costs refers to the overall work done by the proxies.

A. Optimal vs Heuristics comparison

In this set of simulations, we compare the optimal algorithm
with greedy-exchange and greedy-coverage. We conducted two
batch of experiments: Experiment 1: Effect on cost for a
fixed number of proxies placed in a increasing number of
ASs (1(a)) and Experiment 2: Effect on cost for increasing
number of proxies placed in a fixed number of ASs (1(b)). The
optimal solution is computationally expensive and impractical
to compute for large number of ASs. For example placing
� proxies in a ���-node topology takes roughly �� hours to
solve. Also, for large number of ASs and/or proxies time is an
issue, as is the convergence to the optimal solution. But, in an
experimental setup, the optimum cost or best (minimum) cost
serves as a baseline for comparing the heuristics against. So
we generate synthetic small topologies having small number
of ASs to analyze the behavior of greedy algorithms.

The distance matrix � was generated with each entry in the
matrix having AS hop count values randomly generated values
between 1 and 6, with the diagonal entries as 0 (distance of AS
to itself). These numbers were chosen because they are repre-
sentative of the top 100 ASs, as indicated in [5]. The �’s were
generated uniformly in the range ����-���	 and renormalized
so that they sum up-to ���. For the constrained non-linear
optimization we use the Sequential Quadratic Programming
(SQP) method for solving it. Since variables are restricted to
discrete values, we use a branch and bound technique on top
of the SQP method. All experiments were run for a wide range
of parameters and multiple runs. We show the results in figure
1 for � � �, � � 
 and 	 � ��� 
�� ��� ��� �� in experiment
1 and for 	 � 
�, � � �� 
� �� �� � and � � � � � in
experiment 2. As seen from the graphs, both greedy-exchange
and greedy-coverage perform close to optimal and in-fact the
graph behavior of these algorithms is similar to the optimal.
As expected we see the cost increasing when we try to place
3 proxies in an increasing number of ASs (see figure 1(a)).
Figure 1(b) shows exhibits some interesting patterns. a) As
shown by lemma 4.1 in 	IV-C both the greedy heuristics give
the same results as optimum when � � �. b) As expected
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Fig. 1. Comparison of optimal and heuristics

for a fixed 
� number of ASs, when we keep increasing the
number of proxies, the costs drop. But after certain number of
proxies, the costs (including optimal) plateau and then start
increasing as we increase the number of proxies. This is due to
the fact that after some threshold number of proxies, the inter-
proxy cost start dominating over the proxy-AS cost and it does
not make sense to increase the number of proxies beyond that
threshold. Thus, both the greedy heuristics proposed here have
been constructed so as to add proxies in an iterative manner
and stop when the inter-proxy costs start to dominate over the
proxy-AS cost.

B. Comparison of proposed heuristics against other schemes

For the following experiments we chose BRITE [17] to
generate the AS topology over other generators like GT-ITM
and INET, due to its flexibility in changing a wide range of
parameters, ability to interface with other tools and for its
ability to support a lot of the models. We use the Waxman
model and a flat AS representation for topology generation in
BRITE. In this set of experiments we chose � � ���� and
we vary number of ASs 	 � ���� ����� 
��� and for each
we always place � � �� proxies. The distance matrix � is
computed for each of the them running All pair shortest path
Warshall algorithm on the topology generated. For all degree
� nodes � was generated in the range ����-���	, while all the
remaining nodes with higher degrees have theirs in the range
����-���	. Results are shown in figure 2.

We compare greedy-exchange and greedy-coverage against
random and highest-degree-first algorithm. Random algorithm
is load oblivious. It’s � proxies are chosen randomly and each
AS is then assigned the closest proxy near it. Highest-degree-
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Fig. 2. Comparison of Heuristics

first algorithm chooses the proxies based on the degree of the
different ASs. The AS with the highest degree is chosen first,
the AS with the next highest degree is chosen next and so on.
Again, once all the proxies are placed, each AS is serviced by
the closest proxy. These algorithms have been considered as
reference algorithms in [2], [5]. They again serve as baseline
heuristics for comparison against and the results are shown in
figure 2. It can be seen that greedy-exchange, greedy-coverage
and highest-degree-first algorithms, all outperform random
one, reasoning being that random algorithm does not take
into account any form of load consideration. greedy-exchange
performs the best. The performance of greedy-coverage and
highest-degree-first are very similar. As mentioned in �II-B,
an AS degree captures weakly the notion of host coverage.
In effect, when greedy-coverage attempts to equally distribute
the load among � zones first and then places a proxy in each
zone, it mimics what an AS degree does. It has the same
effect as balancing the overall sum hosts covered by an AS,
when a proxy is placed there which is the notion captured by
the degree of an AS. Also both greedy-coverage and highest-
degree-first, solves the host coverage (load) dimension first
and then the proxy to AS distances as a secondary problem.
Also both do not solve for costs associated with inter proxy
distances. greedy-exchange solves simultaneously all the costs
involved in 1)host coverage 2)proxy-as distance and 3)proxy-
proxy distances taking into consideration all the tradeoffs
involved. Thus it outperforms all of them.

C. Sensitivity study through perturbations of input data

In the following experiments we try to analyze the behavior
of the greedy algorithms, when the input data is erroneous.
The idea is that we place the proxies with existing data using
the heuristics and compute the cost for it. Then we perturb the
input data and use this to compute the cost as “what should
have been” with real/actual data. The error percentages are
computed with this actual data as reference. We study the
impact on the heuristics due to 1) erroneous coverage and 2)
erroneous topology i.e. error in distance matrix. Due to space
constraints, we do not show the performance graphs here but
it can be found in [7]. Instead we just summarize the results.

As expected, perturbations of coverage data affects greedy-
coverage more than greedy-exchange and perturbations of
distance data affects greedy-exchange more than greedy-
coverage. Interestingly, greedy-coverage (which mimics per-
formance of highest-degree-first algorithm) has really close
to �� error for perturbations of distances. In both the cases
(perturbations upto ��� of host coverage as well as upto ���

of the edges by ��� of the distance value) greedy-exchange

and greedy-coverage algorithm do very well, with less than
���� error or deviation from actual. Hence these algorithms
are quite stable with reference to small errors.

VI. CONCLUSIONS

In this paper we address the issue of placing proxies so
as to enable content delivery over the Internet. We proposed
a novel idea of host coverage, a coarse measure of load
and provided techniques to compute it. Then we formulated
the problem which takes into consideration all the factors
that affect the proxy placement decisions, namely load, AS-
proxy distances which affects the response time of servicing
requests originating from an AS and also inter-proxy distances
which enables a more resilient proxy service on failure and
a more flexible setup to enable moving content between
proxies. Next we proposed two heuristics greedy-exchange and
greedy-coverage and their analysis. Finally from the various
performance results of the experiments, it has been shown that
the both the greedy-exchange and greedy-coverage algorithms
are insensitive to minor perturbations of the input data and
are hence quite stable. Further these algorithms model close
to optimal behavior and in-fact greedy-exchange outperforms
both random and highest-degree-first heuristic, while greedy-
coverage performs much better than random but is similar to
highest-degree-first.
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