
Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 1

A Multimedia Temporal Specification
Model and Language

Paul Pazandak

Jaideep Srivastava

Abstract

Several models support the specification of temporal relationships for the recording
and presentation of multimedia. The five principal approaches used by these
models include hierarchic, timeline, reference point, event, and event-based
languages. Many of the current models, however, lack expressiveness, or require
complex specifications. We introduce a temporal event-based model that defines
three basic relations that express causality, deferment, and fine-grain synchrony;
within this model we introduce the notions of deferment, and affectable and non-
affectable events. The language based upon our model contains just three
primitives for temporal specification of these relations. Using them we can express
the temporal relations of the sixteen models studied, and we can further express
several relations that cannot be specified by these models. An interesting feature of
our model is that it supports both a conceptual specification as well as extensions
for defining the system implementations, resulting in additional flexibility. We
describe our model using a temporal specification model framework we used
previously to compare several models.

1 . Introduction

The demand for, and use of multimedia is growing rapidly. One area of particular importance is

the development of applications that support the creation of multimedia presentations: the organized

playback or recording of multimedia information. A multimedia presentation contains timing

information (a temporal ordering) describing when (and perhaps how) each media object should be

presented1. The set of temporal orderings is called a temporal specification ; its structure is

regulated by a temporal specification model. A temporal ordering may be absolute (e.g., play

video X at 2:00, play audio Y at 3:00), or relative (play audio Y after video X) to other media

objects being presented. This temporal ordering must be specified using some mechanism, such as

1We use variations of ‘presentation’ in the abstract or typeless sense -- the presentation of media objects will actually depend upon the
data type of the objects -- e.g., generally, audio is played on a speaker, while video is displayed on a screen.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 2

a scripting language, provided by the application. There is a wide range of proposed (and

implemented) temporal specification models to date. Two primary discriminators are: 1) the

expressibility of the model, which is the types and number of temporal orderings that can be

expressed in a model, and 2) the simplicity of the model, meaning how simple it is to define a

temporal specification (e.g., does it require learning an entire language to specify, or only a few

predicates). Most current models are either too complex, or not expressive enough (the current

models do not support negative delays within their specifications). For example, without negative

delays, the following temporal specification cannot be expressed: “Start the audio introduction two

minutes before the main video presentation begins”, without explicitly stating when the main video

presentation begins.

To reiterate, a temporal specification model facilitates the ability to specify temporal orderings by

defining temporal relationships involving media objects. The usual examples of media objects

include images, graphics, movies/videos, text and audio soundtracks. Spatial specification

(beyond the scope of this paper) is used to define the spatial relationships and attributes for

presentations of media objects, such as the dimensions and location of a window on a monitor that

will contain the playback of a video.

Temporal specifications are used directly or indirectly by applications to determine the sequence in

which to record, or to present, media objects. Two common examples of temporal relationships

are “parallel” and “serial”. Two media objects having a “serial” relationship are played one after

the other, while a “parallel” relationship will cause them to be played at the same time. These

relationships temporally synchronize the presentations of media objects, synchronizing the starting,

and perhaps the ending of media object presentations to other media objects’ starts or ends; to some

point in time; or, perhaps to the occurrence of some event.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 3

In addition, a finer level of synchronization2 is required to coordinate the presentations of media

objects that have a high degree of temporal interdependency. Finer degrees of synchronization

specified between media objects produces the synchronized presentation of related portions of the

media objects. At the level of our discussion, media objects can be subdivided many times into

subobjects, such as frames of a video, lines of a frame, and pixels of a line. Although not

mandatory, the units of synchronization for presentation purposes are usually limited to logical

units (or media atoms) such as frames, and samples of audio. An example is the synchronized

playout of a video and its related audio. When a given framei of the video is presented, the

interdependent audio samples of the audio are also presented. We will use the term fine-grain

synchronization to describe this degree of synchronization, as it best corresponds to our view that

synchronization involves the coordinated presentation of finer granules, or atoms, of media

objects.

Synchronization at this level is required, for example, when the audio contains the sounds visually

produced within the video -- such as people talking -- so that we see the actions at approximately

the same time as we hear the sounds. To avoid the “lip-synch problem”, the delay between the

playout of each video frame and its associated audio samples should be no greater than 150ms[2].

Multi-channel audio will require smaller delays, while a slide presentation with background music

may not require fine-grain synchronization at all.

A useful way to describe the features of different models is to categorize them with respect to how

the media objects are temporally synchronized. In [6], Blakowski defined three primary

approaches for temporal synchronization:

2Invariably different terminology is used by different models. For example, continuous synchronization is used [1, 2], total
synchronization in [3], temporal composition in [4], tightly coupled inter-object synchronization in [5], and fine-grain synchronization
elsewhere.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 4

• hierarchical - Using a tree structure, temporal relations are constructed using internals

nodes (generally either ‘parallel’ or ‘serial’ temporal relation operators), and leaf nodes

(media objects).

• timeline - Temporal relations are specified by indicating the start (and perhaps end) times

of the media object presentations using implicit or explicit timelines.

• reference points (synch points) - The temporal relations are defined by logically

connecting together the synchronizing points that have been inserted within the different

media objects.

Two other approaches have also been used: Causality modeling (event-based3) and

programming languages (event-based languages). Both of these involve synchronizing the

begin/end points (and perhaps any point in between) of a media object’s presentation to the

occurrence of events. Events include system events, application events, user-defined events and

events associated with the beginning or ending of a media object’s presentation. Many of the

models based upon each of these five approaches cannot directly express complex temporal

relationships (e.g. timeline), or they require generating complex specifications (e.g. event-based

languages).

We have defined a framework [7] that summarizes and compares several temporal models. It is

apparent from our comparisons that models based on timeline and hierarchic approaches can

express fewer temporal relations than models using the event-based approach. Using this

framework we will describe our model for temporal specification. The model is based upon three

simple, yet powerful relations for expressing causality, deferment and fine-grain synchrony. We

3The synchronization points used by Blakowski [6] for example, have some similarity to events, but are not the same.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 5

have shown that the primitives of our language based upon these relations can express all temporal

relationships expressible in any of the other models (see [7]).

In section 2 we review this framework, and follow with the description of our model in section 3.

Finally, we discuss implementation issues in the form of system-defined extensions in section 4,

followed by conclusions in section 5.

2. A Multimedia Temporal Specification Model Framework

Our framework provides a means of describing multimedia temporal models in a uniform manner.

At the most basic level, every temporal model includes objects and relations. Temporal

specification provides some means to express temporal relations between objects; a relation

represents a temporal synchronization intention. A temporal specification defines the intended

presentation of the media objects, not the actual presentation that will depend upon resource

availability, data loss, and user interaction for example.

The richness of a model is directly associated with the set of objects and types of relations that can

be expressed. In addition, several of the proposed models provide other capabilities and system

supported features for enhancement through the use of programming languages. Rather than focus

on the language in which it may be embedded, our framework focuses on the temporal objects and

relationships, providing an accurate means of evaluating the expressiveness of a model.

2.1 Temporal Objects

In our framework, temporal objects are the model elements upon which relations are specified.

Temporal objects include media objects, events and timepoints.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 6

2.1.1 Media Objects

Within an object-oriented environment, media objects may be modeled in different ways and have

different meanings. Several multimedia data models have been proposed in [8-12]. We define

media objects as instances of media classes that represent both time-dependent (continuous), and

time-independent (non-continuous) data types that may be used within multimedia systems.

Examples of time-dependent data types are video, and audio; examples of time-independent data

types are images and text.

Media objects can be simple, such as a video clip, or they can be composite media objects, also

called multimedia objects, which are composed of simple and composite media objects. They can

also be the atoms of simple media objects, such as samples of an audio clip. (Composite media

objects may be composed of media objects of several different data types.) In general, relations are

defined on media objects with respect to their entire interval, called interval specification, or, with

respect to their endpoints, called endpoint specification. Endpoints are defined as the points that

bound an interval, namely its starting point and ending point. Intervals have endpoints and an

associated duration, and are used to represent the presentation (runtime execution) of media

objects.

Current timeline models (e.g., [13-15]) and hierarchic models (e.g., [16, 17]) use interval

specification. Allen’s work [18] also discusses relations on intervals within his conceptual level

specification. Endpoint synchronization has been used in synch point models (e.g., [2, 3, 6]),

event-based models (e.g., [19, 20]), and event-based languages (e.g., [1, 8, 21]). At a conceptual

level, endpoint relations have been defined in [22].

In addition, we can classify media objects as either having a predictable or unpredictable duration

(e.g., [6, 19]). We define duration as the length of time it takes to complete the presentation of a

media object once it has begun. This duration can be approximated by multiplying the number of

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 7

media atoms (e.g. video frames) within a time-dependent media object by its associated rate of

playback (consumption rate). All temporal models can accommodate media objects of known or

predictable duration. Examples include most pre-recorded media, such as films, and soundtracks.

Unpredictable durations may involve media objects having one of the following: no inherent

consumption rate, such as images; a flexible consumption rate, such as text (consumption rate is

equal to the scroll rate and may be user-dependent); or, media objects that are being recorded in

real-time, such as the signal from a surveillance camera.

2.1.2 Events

As stated above, the endpoints of media objects can be tied to events. Specifically, the beginning

of an interval has a begin event, while the end of an interval has an end event. To provide

additional flexibility, events can be defined at a finer grain within media and multimedia objects.

For example, we could attach an event to the beginning of a particular sample associated with the

start of a word within an audio clip. This is easily done when a flexible data model has been

defined.

User- and application-defined events are additional temporal objects that can be used within a

temporal specification. They can be part of temporal specifications involving other events, such as

begin and end events. For example, we could indicate that a begin event for a media object should

coincide with some application-generated (or system-generated) event, such as a user selecting a

specific menu option from a graphical menu. We may also be able to define events, called time

events, to be generated at specific times with respect to internally- or externally-defined clocks.

Several models (including all event models) provide the capability to specify that an event should

be triggered or caused to occur, such as the starting or ending of a presentation. If an event can be

forced to occur at any desired time, we say that it is an affectable event; otherwise, it is a non-

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 8

affectable event. Begin and end events are affectable, because we can cause them to happen (we

can specify when the presentation of a movie should begin, and when it should be terminated) .

Some user- and application-defined events may be affectable (such as opening and closing of

graphic windows on a display), while others may be unaffectable (such as receiving messages or

interrupts). Time events4 are unaffectable, because we cannot cause an instant associated with a

time event to occur; it will only occur at its defined instant in time.

Additionally, if our system provides image or sound analysis (and pattern-matching), we may be

able to define events associated with the occurrence of a particular sound or image within the audio

or video presentation. One could associate an event with the appearance of a red balloon, for

example. This is an unaffectable event, since intuitively we cannot force the red balloon to appear

in the video. Fujikawa [20] discusses the automatic generation of events corresponding to

spontaneous actions within media objects, such as video.

To determine whether an event is affectable or not, we define a system boundary within which we

have control over events, and outside of which we do not (see figure 0). For example, the causes

of the following events perceived by our system exist outside of the system: 1) the progression of

time, 2) interrupt generation, and 3) messages that are received (others also exist). We can use the

occurrence of any event to trigger or cause the occurrence of an affectable event that resides within

the system.

4It may be useful to define local clock time events as affectable events. We could then synchronize local clocks with other local
clocks, system clocks, or world clocks, for example.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 9

Affectable
Events

Unaffectable
Events

System
Boundary

TimeEvents

Interrupts

Messages

Spontaneous
Content-driven

Events

Begin
Events

End
Events

User-defined
Events

Application
Events

System-defined
Events

Figure 0. System boundary for affectable and non-affectable events.

2.1.3 Time

Timepoints are instants in time associated with user-defined timelines, i.e., they have no duration.

Timepoints are used to specify starting and/or stopping points for media objects. We can specify a

timepoint, such as t0 + 3 minutes, whose origin (t0) is the beginning of a presentation, called

relative time. We may also specify a timepoint -- 12:45pm -- with respect to world time (perhaps

Greenwich Mean Time). Of course, synchronizing to a specific world time instant will only have

an effect if a process is executing the temporal specification when this instant occurs.

2.2 Temporal Specification

A temporal specification defines temporal relationships between temporal objects. These relations

can be classified into two categories: Object synchronization and Fine-grain synchronization.

Object synchronization, as previously described, is used to define the relative temporal ordering for

the presentation of media objects. Fine-grain synchronization is used to indicate that a semantically

stronger relationship exists between intervals being presented simultaneously. For example, we

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 10

can define a temporal relation indicating that two audio clips should start and end simultaneously.

However, this relation suggests nothing about how the audio clips should be played in relation to

each other. Due to the limitations of current systems (network delays, resource contention, loss of

data, etc.) the playout rate of any media object will generally fluctuate. If these audio clips

comprise left and right channels of a high-fidelity recording, the delay between the playout of

related samples of each audio clip should be less than approximately 50ms (dictated by human

perception of audible delays). Thus, fine-grain synchronization should be defined on these

intervals to indicate there is a degree of synchronization that should be enforced by the

system/application when these objects are played out.

Some models may define fine-grain synchronization as simply an extentional representation of an

object synchronization relationship. That is, if we view each media object as being composed of

smaller objects (e.g. atoms), we can simply define temporal relationships between the atoms at this

level, using object synchronization. In actuality, most of these models support a macro-type object

synchronization specification between media objects. This would result in relationships being

defined between the atoms of the media objects. Since not all models view fine-grain

synchronization in this way (extentionally), we have defined the two types of temporal relations as

described above.

2.2.1 Object Synchronization

We summarize the expressiveness of a model’s temporal relations using five descriptors: Basic

relations, derivable starts, delayed starts and finishes, causality, and deferment.

2.2.1.1 Basic Relations

Basic relations describe a model’s capability to represent very general temporal relations between

intervals or endpoints. When discussing the expressive power of temporal models, it has been

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 11

customary to reference Allen’s work on interval relations[18]. Allen has identified 13 relations that

can exist between two intervals. However, these relations are between intervals; and, while some

of the models use interval relations, most use endpoint relations. We define the following three

basic relations (figure 1) that can be expressed using intervals or endpoints: START TOGETHER,

START AT FINISH, and FINISH TOGETHER. FINISH TOGETHER is required to support

unpredictable durations. Otherwise, use START TOGETHER with synchronization delays

(discussed below) to achieve the same relation with intervals having predictable durations.

Interval/Presentation Interval EndPoint

Time

TINISH OGETHERF ATART TS INISHFTTART OGETHERS

Figure 1.

If the model expresses (positive) delayed synchronization (defined below), it will be able to

represent Allen’s 13 relations.

2.2.1.2 Derivable Starts

Derivable starts permit a temporal specification that only involves specifying the interval’s end

point. So, for example, we may want to constrain a movie to end at 3:00 pm. We then leave it up

to the system to determine a proper start time to satisfy this constraint. The interval’s approximate

start time can be derived by its ending time and predicted duration. Of course, deriving start times

for intervals of unpredictable duration is not possible. Current timeline models define starting and

ending times for each interval, and current hierarchic models use a top-down specification

(relations involve the start of intervals). Therefore, neither can specify derivable starts.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 12

2.2.1.3 Delayed Starts and Finishes

As described above, models should also be able to represent delayed starts and finishes, in order to

extend the flexibility of a temporal specification. The basic relations allow precise alignment of

interval endpoints. For example, interval IA begins at the exact same time as interval IB begins, or

IA begins exactly when IB finishes. Supporting the specification of start and finish delays extends

the expressiveness of a model. Thus, we can express such specifications as IA starts 30 seconds

after the end of IB. Temporal specifications of any interval within timeline models are with respect

to a timeline, rather than by specifying relations between intervals. Therefore, it is impossible to

directly specify delayed starts and finishes within those models. However, the models can

implicitly specify delays by assigning appropriate start and finish times to the intervals.

Models may specify delays that are positive values, negative values, or value ranges. The example

above used a positive delay: “...start 30 seconds after the end... .” We cannot specify, however,

that “a movie ‘trailer’ should end one minute before the feature movie presentation begins” using

postive delays. To do so, we need to specify a negative delay (e.g. -1 minute). In this situation,

the movie’s start time must be known or derivable (either during compile time or runtime).

Ranges provide another dimension to specify delay specification. Range delays were discussed

extensively in [2], and later in [23] as a means of supporting additional flexibility in specifying

start and finish times. Providing an acceptable range of values shows that precise timing isn’t

always required, and it also provides the system (e.g. a runtime temporal formatter) with some

flexibility in determining start or finish times, rather than requiring exact timing, which usually

isn’t possible anyway.

2.2.1.4 Causality

Causality enables the triggering of actions based upon the occurrence of events. Actions can take a

number of forms, such as the starting, stopping, fast-forwarding, or rewinding of a media object.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 13

Events can be basic, such as the begin event of a media object, or user-defined, such as defining a

media-based event associated with the appearance of a red ball within a scene in a film. They can

also be application-defined, such as a menu selection made by a user, or time events that are

triggered when a timepoint associated with a specific clock occurs. (Remember that events can be

classified as either affectable or unaffectable.)

In a basic way, we can define causality using two events X and Y, such that “the occurrence of

event X causes the occurrence of event Y.” How this specification is actually implemented varies

from model to model. However, the essential behavior is that the occurrence of one event causes

another event to occur.

As stated above, causality has an associated implementation at the system level. In general, most

temporal specification models have defined the same basic behavior for causality, as described

above. We say a model is flexible if the temporal specification of the model provides some

alternatives as to its implemented behavior, rather than just one defined behavior.

2.2.1.5 Deferment

While causality brings about the occurrence of an event, deferment is used to inhibit an event from

occurring. More specifically, we can inhibit (or defer) an event during a specified interval. We

can define deferment using one event X and an interval i, such that : “event Y does not occur

during interval i.” Since time is always increasing, if event Y would have occurred during this

interval, we can restate this as “event Y will not occur at least until the end of interval i.” For

instance, if a video is presented with background audio, a practical example of deferment might be

to inhibit the end event of the audio at least until the video’s interval ends. Note, however, that

when the end of the video’s interval occurs, it will not cause the occurrence of the end of the audio

-- this must be specified using causality.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 14

As with causality, how deferment is actually implemented is the behavioral aspect of the

specification, and it varies from model to model. From the example used above, it is possible that

the audio will end before the video (otherwise, the specification would not have been made).

Some possible implementations include performing some other action such as repeating the audio ,

or decreasing the consumption rate so that the audio ends just when the video ends.

Deferment delays, like delayed starts/finishes, provide additional expressive power to a model

(they are defined in the same way as delayed starts/finishes). Using delays we can define when the

inhibition should cease relative to the occurrence of the inhibiting interval. If we include a

deferment delay within a specification it should be read as follows: “event Y does not occur until at

least 2 minutes after the time at which the end of interval i occurs.” As above, models can provide

greater flexibility by supporting more than one basic behavior at implementation.

2.2.2 Fine-grain Synchronization

When we require a finer degree of synchronization between intervals than just starting and

stopping at the same time, we need to be able to express this requirement to the system. Fine-grain

synchronization can be used to define synchronizing relationships between intervals that are

playing out simultaneously. In general, fine-grain synchronization is required when fine timing

relationships exist between the atoms that make up the intervals (e.g. video frames are the atoms of

a video clip).

Referring to a prior example, the playing out of a movie and its related soundtrack requires a

certain degree of synchronization between the video frames of the movie, and the audio samples of

the soundtrack. This is required, for example, so that the actors in the film mouth words at the

same time the words from the soundtrack are played over the speakers. The delay between the

display of a video frame and the playing of the associated audio samples should be no more than

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 15

150ms, as previously discussed. Note that a delay of 0ms is not required, nor would it enhance

the quality of the playout since average human perception requires “only” a delay tolerance of no

more than 150ms. We can use this information to ensure the appropriate level of synchronization,

without demanding more than is required.

In principle, fine-grain synchronization may be implemented solely by defining individual temporal

relationships between the atoms of the intervals to be synchronized. Considering that high quality

audio is recorded at 33,000 samples per second, defining these relationships between two one-

hour audio recordings would be a daunting task. In actuality, most current models support the

specification of fine-grain synchronization at the interval level. This is understood by the system to

be a semantically stronger relationship, requiring a fine degree of synchronization between the

atoms of the intervals.

A number of different approaches exist within current models for fine-grain synchronization.

Some models provide only one level of synchronization; while others provide variable levels of

synchronization -- for example, 0.0 could indicate no fine-grain synchronization is required, while

1.0 would indicate the finest level of fine-grain synchronization is required[6]. Some models treat

fine-grain synchronization as an extentional relationship specified on intervals[2, 3, 6]. In turn,

temporal relationships are actually specified between the atoms of the related intervals. For

example, synchronizing two thirty minute videos (at 33 frames per second) would require 59,400

relationships with models supporting macros and one level of synchronization, or variable

synchronization equal to 1.0 [2, 3, 6].

Finally, models can offer flexibility by supporting alternative methods for implementing

synchronization -- for example, allowing a user to request a specific means of synchronization -- as

the behavioral implementation [24].

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 16

3.0 Temporal Assembly Language

In this section, we will describe our temporal specification model and language. Our model

includes three powerful and yet simple relations expressing causality, deferment and synchrony

(fine-grain synchronization). Using these we have been able to express the relations that may be

specified in all of the other models examined (see table 1). In addition we can express several

relations that cannot be expressed in any of those models.

To assist in the understanding of this model we will define the following temporal specification

scenario, which we will refer to throughout section 3 (figure 2). We have chosen to use a (slightly

modified) graphical notation introduced in [19], for this example. Using this notation, the timeline

has been turned on its side, where each media object has its own timeline (its length is proportional

to its optimum duration). Square nodes represent media begin and end events, while round nodes

represent system or user-defined events. The dashed lines represent media objects with

unpredictable durations; and, arcs represent the temporal constraints that have been specified. Note

that media objects are not positioned accurately in space relative to each other -- this is left to a

temporal formatter, when it checks the validity of the specification.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 17

Audio
Background

Music

Graphic Slide
"My Vacation"

Video
"My Vacations
circa 1980's"

Audio for
"My Vacations
circa 1980's"

StartStartStart

End

End End

Start 0:0:10
Before

End 0:0:05
to 0:0:10
After

Synch To

Begin PresentationStart At

Start At

Start

End

End 0:0:20
After

A

B

C D

E F

Figure 2. Example Temporal Specification

This example contains four media objects: two audio streams, one video and one graphic slide.

The temporal relations of this example, marked by A thru F and indicated within circles, are

described by:

A. The user begins the presentation by selecting a menu option "Begin Presentation", which

should cause the graphic slide to be displayed.

B . The slide is displayed for 20 seconds.

C. The movie is then started when the slide is removed from the display.

D. Ten seconds before the movie begins, the background audio starts.

E . When the movie is presented, the audio track for the movie is also played requiring fine-

grain synchronization (the movie and audio track start and end simultaneously).

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 18

F . Finally, after the movie ends, the background audio is played for an additional 5 to 10

seconds to “wind down” the presentation.

The notational conventions used within this model are as follows. The basic units are:

• Timepoints, T, which represent single instants in time. A timepoint is defined in

relation to a user or system-defined clock, CLKc . Two pre-defined clocks include:

World time (such as Greenwich Mean Time) CLKWorld and presentation-relative

CLKP− REL. At the beginning of a presentation the current time of the presentation-

relative clock, CLKP− REL is zero.

• Basic interval, t, which represents a duration with start point tiand end point t j , where

0 ≤ ti ≤ t j ; and,

• Delay interval, d, having a lower bound di and an upper bound d j , where di ≤ d j .

• Media interval, mobjectI , where objectI is a media object, is a special class of basic

interval. Each media interval has a startpoint, endpoint, and duration (determined by its

execution). Media intervals are associated with the runtime execution (playback,

recording) of media objects. Non-continuous media (e.g. text, or images) have no

inherent duration. We define their start and end points respectively as the time to start

and the time to end the presentation of the media object. As an example, the point at

which an image is first displayed on a monitor is its associated start point, and the point

when it is removed is its end point. The duration is derived from this time interval.

The model we describe is event-based, and defines three basic event types:

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 19

• A generic (including system, application or user-defined) event, EVTi ;

• Beginning and ending events of an interval t , BEG(t) and END(t), belonging to a

special class of event; and,

• Time events, TEVT(T) , are a second special class of event . TEVT() takes a timepoint

T, and generates an event when time T occurs for clock CLKc . (Remember, each T is

associated with a specific CLKc).

In addition, we define two time-related functions:

• occTime(EVTi , CLKc), which takes an event EVTi , and a clock CLKc ,and returns a

timepoint T defined in relation to clock CLKc . It is defined as the occurrence time of an

event. The default clock, if one is not specified is CLKP− REL.

• curr_time(CLKc) returns the current timepoint for the user or system-defined clock,

CLKc . As stated above the current time of the presentation-relative clock just before

the start of a presentation is zero: curr_time(CLKP− REL) = 0.

We can also more precisely define the time at which a time event, TEVT(T) , occurs.

This happens when:

occTime(TEVT(T) , CLKc) = curr_time(CLKc).

Each of the predicates we have defined include two types of specifications: the conceptual

specification, and the behavioral specification. The conceptual specification facilitates the

construction of temporal relations between events, while the behavioral specification is used to

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 20

define the behavior of the conceptual specification at implementation. We provide this distinction

to separate the specification from its implementation. Rather than define specific implementations

for each predicate, we have augmented the predicates to allow the user to select from an extensible

set of behaviors.

3.1 Causality

The first predicate, causes, is used in a temporal specification to define causal relations. It takes

two events, EVTi and EVT j , an optional delay interval, d, and optional system-defined

extensions, SDExt:

causes(EVTi , EVT j , [d], [SDExt]).

A system-defined extension indicates a behavior for the specification. Rather than encode one

behavior as other systems have done, we believe that a system should provide a flexible means of

adding additional behaviors. Therefore, the user may select a non-conflicting set of these for each

specification. Particularly for causes, we have defined only one behavioral specification. Others

are discussed later on.

When the delay interval d = {0,0} (the default value for d), the causes predicate specifies the

following: “the occurrence of event EVTi will cause the occurrence of event EVT j ”. Using the

defaults for d and SDExt we have:

causes(EVTi , EVT j).

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 21

In the example of figure 2, there are two temporal relations where the delay interval is {0,0} --

described by statements A and C. In A, the two events are EVTBegin− pres. and BEG(mMySlide).

When the system generates the event EVTBegin− pres. , it should cause the occurrence of the

presentation of the slide. Therefore, we define the specification as:

causes(EVTBegin− pres. , BEG(mMySlide)).

In C, the events are END(mMySlide) and BEG(mMyVideo) . Here, we would like the end of the

presentation of the slide (the occurrence of its end event) to cause the start of the video (the

occurrence of its begin event). The specification should look like:

causes(END(mMySlide) , BEG(mMyVideo)).

Within a causes statement, the delay interval d is defined as the range {di ,d j}. The range defines

an interval in which the event must be caused to occur. The meaning is: “the event EVT j should

occur sometime within this range (system-dependent5), and therefore, its occurrence time will then

lie within the following time interval:

occTime(EVTi) + di ≤ occTime(EVT j) ≤ occTime(EVTi) + d j .

Note that events and timepoints are not of the same type and can not be added together directly; we

determine the timepoint of an event, EVTi using occTime(). Then, add the minimum (and

maximum) value in the delay interval to determine the valid time interval. Any timepoint

inclusively within this time interval is a valid point to cause EVT j to occur (a system-defined

5One system-defined extension could provide functions that allow the user to define preferences over the delay interval. This would
assign higher preferences to specific points or sub-intervals within the entire interval. As a default, all timepoints within the interval
are assigned preference. The system uses this information in determining what point in the interval will be selected.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 22

extension may define a weight/cost function across the interval, so that some points in the interval

are more likely to be chosen than others). Thus, say the system selects a timepoint k such that:

di ≤ k ≤ d j

and, therefore we have:

occTime(EVTi) + di ≤ occTime(EVTi) + k ≤ occTime(EVTi) + d j .

The initial specification can be restated as:

causes(TEVT(occTime(EVTi) + k), EVT j).

The delay interval in our model can specify positive and negative values, and range delays. No

other models supports specifications using negative delays. We believe that negative delays are

necessary to enable specification of natural temporal relations, as demonstrated in the example

(statement D). Note, that as previously described, negative delays can only be used in conjunction

with events whose occurrence time is known or predictable.

In the example, three temporal relations include delays; they are described by statements B, D, and

F. In B, the two events are BEG(mMySlide), and END(mMySlide) . The relation specifies that the end

event of the slide should be caused by the begin event of the slide + 20 seconds. Therefore, the

specification is simply:

causes(BEG(mMySlide), END(mMySlide) , {20,20}).

Since the lower and upper values of the range are equal, the range specified simplifies to a single

timepoint, defined by occTime(END(mMySlide)) + 20.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 23

Since, statement D uses negative delays, we will first discuss F. In statement F, the relation

indicates that the occurrence of the end event of the video plus 5 to 10 seconds should cause the

end event of the music. The events involved are END(mMyVideo), and END(mMyMusic) . We can

define the specification as:

causes(END(mMyVideo), END(mMyMusic) , {5,10}).

When negative delays are used, the timepoint at which the associated event occurs must either be

known in advance (such as a time event), or the system must be able to estimate it; otherwise, the

specification using a negative delay would be invalid.

In statement D, the relation specifies that the occurrence of the begin event of the background

music should occur 10 seconds before the occurrence of the begin event of the video. From the

specification we have developed, the begin event of the video will occur (indirectly) 20 seconds

after the begin event of the slide. The two events in this specification are: BEG(mMyVideo) , and

BEG(mMyMusic); and the resulting specification is:

causes(BEG(mMyVideo) , BEG(mMyMusic), {-10,-10}).

With respect to its implementation, using a runtime temporal formatter like that described by

Buchanan and Zellweger [19], we believe that it would be possible to implement a capability to

approximate the begin event of the video by approximating the end event of the slide. (Remember,

that the begin event of the video is caused by the end event of the slide.) As the end event of the

slide approaches, the following timepoint will also approach occTime(END(mMySlide)) − 10sec (end

event of slide minus 10 seconds) or equivalently, occTime(BEG(mMyVideo)) − 10sec (begin event of

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 24

the video minus 10 seconds). When this timepoint occurs, the system should cause the occurrence

of the begin event of the music.

The resulting specification is evaluated as:

causes(TEVT(occTime(BEG(mmyVideo)) − 10sec+ ∆t), BEG(mmyMusic))

where ∆t is ideally as close to zero as possible. In general, if the triggering event (such as the

begin event of the video minus 10 seconds) is itself dependent upon other events, its occurrence

time can only be estimated. There are two reasons for this: 1) dependent events may be canceled

by the user; or, 2) the actual timepoint at which a dependent event occurs may be different than the

specification due to presentation delays (such as loss of data). Therefore, the runtime formatter

must continuously update the estimated value for the event; in our case:

occTime(END(mmySlide) − 10).

Updating can occur until some timepoint ∆t − 10sec. before the estimated end event of the slide.

Optimally, ∆t will be close to zero. Note, however, that the intention of this paper is to discuss

how this model provides the ability to define temporal relations, and not to define a precise system-

level implementation.

With any temporal specification that is based upon the assumption of an event’s occurrence, it is

possible that an “incorrect” execution will occur. For example, in the simple specification “start the

audio 3 minutes before the feature presentation”, the audio may be started and the feature

presentation may not start due to a mechanical failure of the projection system. Certainly, some

events may be more likely to occur than others, so perhaps confidence levels could be assigned to

these events. A specification may then refer to a confidence level, such as “start the audio 3

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 25

minutes before the feature presentation, if there is at least a 90% chance that the feature presentation

will start on time.”

Clarification of two aspects of causes must be addressed; the first pertains to derivable starts. The

following causes statement specifies that “the occurrence of the beginning of a movie will cause

the occurrence of the end of the audio.”

causes(BEG(mmovie), END(maudio)).

Note that it does not specify when the audio should begin. If the beginning event of the audio

interval is not part of another specification (and therefore the timepoint at which the audio will

begin has neither been directly or indirectly specified otherwise), this statement may be used to

determine the start time of the audio (e.g., derived start). The system could derive a specification

for the start as (the event equal to the occurrence time of the beginning of the movie minus the

predicted duration of the audio will cause the occurrence of the begin event of the audio).

causes(TEVT(occTime(BEG(mmovie)) - length(audio)),BEG(maudio)).

The second aspect of causes we must clarify is the types of relations that can actually be specified.

If we restrict our temporal specification to two media objects and their associated events (BEG and

END), we can specify four basic relations:

• Begin-at-Begin -- Begin one interval at the beginning of another interval

• Begin-at-End -- Begin one interval at the end of another interval

• End-at-End -- End one interval at the end of another interval

• End-at-Begin -- End one interval at the beginning of another interval.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 26

Again, if we limit the delays to positive and negative delays (no ranges), each relationship has three

possible forms. Using one relation, Begin-at-Begin, and adding delays it becomes Begin-at-Begin

+ t where t>0, t=0 or t<0. The three forms are then:

• Begin-at-Begin -- Begin one interval at the beginning of another interval (t=0)

• Begin-at-Begin + t -- Begin one interval t units after the beginning of another interval

• Begin-at-Begin - t -- Begin one interval t units before the beginning of another interval.

If we specify temporal relations using only one of the events from each of the two media objects,

we can specify 12 relations (four basic relations x three forms each). If we specify relations on

these media objects that involve both their BEG and END events, there are an additional 36

possible relations that can be expressed for a total of 48 relations -- that only involve two media

objects. If we can use any temporal objects (e.g., time events, user-defined and application

events, finer-grain events), and include range delays, the number of relations that just the causes

predicate can express is quite large.

Just as an example of contrast, current hierarchic models can express two of these relations: start-

at-start (parallel) and start-at-end (sequential), where t=0, or t>0. These models can simulate the

third basic relation end-at-end, finish together, using the start-at-start relation and null objects (their

form of delayed synchronization) [17]. Null objects delay the beginning of each media object so

that their ending times will occur simultaneously (the length of each media object must be known).

Still, current hierarchic models can only express Allen’s 13 relations (they include no other

temporal objects to synchronize to).

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 27

3.2 Deferment

The second predicate, defers, is also used within a temporal specification to define temporal

relations. However, defers is used to inhibit events using deferment. The notion of deferment

compliments the notion of causation: using two predicates we can cause an event to occur, and

inhibit an event from occurring. Defers takes one event, EVTi , an interval t, an optional delay

value di , (default di = 0), and an optional set of system-defined extensions SDExt (as described

above). The interval t is either a basic or media interval, composed of bounding events BEG(t)

and END(t), where by definition,

occTime(BEG(t)) ≤ occTime(END(t)) .

The form of the statement is:

defers(t, EVTi , [di], [SDExt]).

Again, if we use the defaults, the specification simplifies to:

 defers(t, EVTi).

This specification should be interpreted as: “interval t defers EVTi ”; or, not quite so tersely as: “if

EVTi would occur during interval t, the occurrence of event EVTi will be deferred at least until the

occurrence of the end event of interval t.”

The deferment of an event can have several implementational behaviors. For some events, it may

be desirable, if possible, to actually disable the causing factor of the event (such as disabling a

menu option). While for other events, we may only be able to defer the time at which the event is

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 28

actually registered. At the implementation level, within an object-oriented environment, objects

may define their own methods to handle a defer-related system extension invocation.

Therefore, when an event is deferred, the cause of the event may or may not be disabled -- it is a

behavioral implementation choice. As an example, we may construct a graphical menu with a

“Quit” option that generates an event, EVTQUIT , when selected. If we defer this event during a

specified interval, two of the possible implementations may include: disabling the menu option

“Quit” so it cannot be selected (this disables the cause of the event) during the deferment interval;

or, buffer EVTQUIT if the menu option “Quit” is selected, and then register it once the end of the

interval occurs. The event, EVTQUIT , described above is an example of an interval-independent

event. Interval-independent events are not associated with the beginning or ending of a basic

interval.

Remember, that basic intervals have begin and end events, where the duration of an interval is

defined as:

duration(t) = occTime(END(t))- occTime(BEG(t))

Events such as these are called interval-dependent events since they affect the duration of intervals.

For example, the deferment of an end event can modify the duration of an interval; by deferring the

end event of an interval, the duration of the interval will be longer to the extent that the end event

was deferred. (Note that the deferment of a begin event will not alter the duration of an interval,

since only the start time is modified.) Therefore, defers can increase the duration of an interval.

For example, we can cause the begin event of a two hour movie to occur at 1:00pm, and defer its

end event until at least after the end of the interval {1:00pm, 4:00pm} -- the system must defer the

end event from occurring until at least this time. The behavior we select for this specification at

implementation may be: to play the movie slower so that it lasts for at least 3 hours (until at least

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 29

4:00pm); to restart the movie at 3:00pm (when it would otherwise end, since it is two hours in

length) to play the movie again; or, perhaps some perform some other action (similar to alternate

actions in [6]) offered by another system-defined extension.

In contrast, causes can shorten the duration of an interval by causing the end event to occur earlier

than it would occur naturally. For example, if we cause the begin event of a two hour movie to

occur at 1:00pm, and cause its end event at 2:00pm, we have shortened the duration of this interval

to one hour. Implementations of this specification include speeding up the rate of playback so that

the movie can be played in one hour; or, truncating the movie when 2:00pm occurs (other system-

defined implementations may also be supported). We leave it to a temporal formatter to identify

intervals that have been lengthened by a deferment, or shortened by a causal specification.

As with causes, we can also specify positive and negative delays. We haven’t found range delays

to be particularly useful6 , so currently we do not support range delays for this predicate.

With respect to our example in figure 2, statement F requires a deferment relation to be specified.

Why? The background music interval is shorter than the movie, and it shouldn’t end until at least

10 seconds after the end of the movie. For the deferment specification, the event is

END(mMyMusic) ; the deferment interval will be mMyVideo ; and, the delay will be 5 seconds (we want

to defer the end of the music until at least 5 seconds after the video ends). We will also assume for

this example, that a system-defined extension exists, “Expand”, that will slow the music’s rate of

play so it ends at least 5 seconds after the movie. Therefore, the specification will be:

 defers(mMyVideo , END(mMyMusic) ,5, “Expand”).

6The range delay for a cause statement defines a closed interval. The event should not occur before di not later than dj. For a

deferment, the interval is open. That is, the event should not occur until at least di. Specifying an upper bound on the interval has no

meaning when the interval is open-ended (at some future time their may be some motivation to attach some meaning to this).

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 30

We can interpret the above example as, “the end event of the music will be deferred until at least 5

 seconds after the occurrence of the end event of the video.”

Using the above specification, if the end of the interval mMyMusic associated with the music will

naturally occur after the end interval mMyVideo associated with the video, this specification will have

 no resulting effect. If the music will end before the video, this specification will have some effect

dictated by the behavioral implementation chosen by the user as described above.

The deferment specification delays the end of the music so that it won’t occur at least until the

desired time. If we want to ensure that the end event for the music does occur at a particular time,

we need a causal specification. In the example of figure 2, the temporal relation also indicates that

we want the music to end 5 to 10 seconds after the video. Thus, within the temporal specification

for this presentation, we need to define three statements related to the presentation of the music.

We have previously defined the following statements for this purpose:

To start the music, we defined:

causes(BEG(mMyVideo) , BEG(mMyMusic), {-10,-10}),

and, to defer the end of the music, we defined:

 defers(mMyVideo , END(mMyMusic) ,5, “Expand”),

and, to end the music, we defined:

:

causes(END(mMyVideo), END(mMyMusic) , {5,10}).

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 31

3.3 Fine grain synchronization

Fine grain synchronization in our model is specified using the primitive synch. It takes two

intervals tm ,tn, where tm and tn may or may not have the same length; a synchronization factor,

synchƒ, to support variable level synchronization; and, an optional set of system-defined

extensions, SDExt, for the behavioral specification.

The intervals are either basic or media intervals, t , composed of bounding events BEG(t) and

END(t), where by definition,

occTime(BEG(t)) ≤ occTime(END(t)) .

The synchs specification has the form:

synchs(tm, tn , synchƒ).

This should be read as, “synchronize the presentation of the atoms of tn to the atoms of tm, at least

to the degree specified by synchƒ.” (As stated above, these intervals may have different lengths.

What actually occurs at implementation can be specified using system-defined extensions - see

section 4 for a discussion of some extensions.)

In some models [6], variable synchronization is specified by setting a synchronization value within

the range from 0.0 to 1.0, as described in section 2.2.2. While synchƒ = 1.0 is allowable, in

general it is probably not achievable. More importantly, for most applications it is not required.

As discussed in section 2.2.2, due to the limits of (average) human perception, delays between the

display of related atoms from each media interval are tolerated to seemingly well-defined values.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 32

However, we should clarify that a single synchronization value can only be used as a high level

indicator. It should be treated as a first-order specification for the enforcement of synchronization

between the atoms of the intervals. At an implementation level, additional constraints would need

to be specified such as the maximum number of frames that can be lost within an interval (loss

rate), and the maximum number of frames that can be lost in a row (bursty loss rate).

It is also our opinion that variable synchronization should be supported within a temporal

specification. This allows the system to determine what degree of synchronization it will provide,

bounded by perfect synchronization and the synchronization factor specified by the user. How

‘perfect synchronization’ is defined and enforced is system-dependent. However, within our

model, we support enumerated values for synchƒ, rather than real values in the range 0.0 to 1.0.

An example of enumerated values might include: “High Fidelity Audio”, “High Definition

Audio/Video”, “Standard Audio”, “Standard Audio/Video”, etc... Of course, definitions for these

values must be supported by the system. Thus, if two CD-quality symphony tracks were to be

synchronized, we may set synchƒ equal to “High Fidelity Audio”. These values can carry

additional meaning that may help to define second or third-order constraints at the implementation

level that is generally not possible with the first approach.

For the last temporal specification required in our example of figure 2, we need fine-grain

synchronization between the video and audio to ensure that we do not have a lip-sync problem.

The two intervals then are: mMyVideo and mMyAudio . synchƒ will be “Standard Audio/Video” since

the audio and video were recorded using a video camera that didn’t support high definition

audio/video -- we will presume that “Standard Audio/Video” will satisfy our requirements. This

specification will then be:

synchs(mMyVideo , mMyAudio , “Standard Audio/Video”).

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 33

Since our model separates conceptual specification from behavioral implementation, it can support

any number of implementations. For fine-grain synchronization we offer a brief description of one

possible implementation for synchronization based upon rate drift constraint. By constraining the

rate drift between the atoms within the intervals we can ensure synchronization. We begin with a

simple example of two media intervals, mmusicA and mmusicB, having the same duration and same

number of samples (atoms). We can define the rate drift, r, for the playback of sample i of each

media interval as:

r = Samplei.musicA.StartTime − Samplei.musicB.StartTime .

To constrain the rate drift throughout the interval, we can specify a constraint interval c, such that:

∀(i)(Samplei.musicA.StartTime − Samplei.musicB.StartTime ≤ c) .

For high fidelity stereo, we could constrain c = 50 ms. If the media intervals were of different

types, or the ratio of atoms isn’t 1:1, a slight variation of this is required.

Other approaches, such as timestamping (e.g. [24]) or synchronization points (e.g. [6], [2], [3])

require adding synchronization information to the media itself. Unless this information can easily

be modified at runtime, changes to the rate of playback or quality of service will be problematic for

these approaches.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 34

3.4 Additional Specification

In addition to the temporal relations that can be specified in this model, other information may be

required for the playback of media objects. Two examples include quality of service (QoS), and

the consumption rate σ. Each of these are associated with the presentation of the individual media

objects. Again, σ, is the rate at which the atoms of a media object are displayed. This value may

be directly modified, say to twice the nominal rate, 2σ. It may also be altered indirectly by a

system-defined extension associated with a defers or synchs specification, that may have

compressed or expanded its associated interval (accomplished by modifying the rate).

QoS can be specified at the media object level, or on entire multimedia presentations. To buffer the

implementation details from the specification we suggest that QoS levels are used, perhaps in the

form of enumerated types. They would range from a high quality of service to a low quality of

service, similar to that used by the synchƒ variable in the synchs predicate.

4 . 0 System-defined extensions

In this section we present some system-defined extension examples for the causes and synchs

predicates. When a temporal relation is specified using causes, one possible extension could

allow the user to specify whether the synchronization should be relative or absolute. Using an

example, say the end of an audio causes the beginning of a video. With relative synchronization,

the beginning of the video will occur when the end of the audio actually occurs. While using

absolute synchronization, the beginning of the video would occur when the audio would end,

barring any delays, such as network delays.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 35

In addition, we have also considered extensions for synchs to handle runtime relationships and

the synchronization of uneven intervals. First, when specifying fine-grain synchronization for

runtime interactions, it may be useful to specify additional semantics on this relationship. These

relationships may define dependencies, for example, that affect the presentation (similar to [3]).

Two of these include dependent, and co-dependent. A dependent relationship between

synchronized presentations indicates that the playout of one presentation (A) will be dependent

upon the state of the other presentation (B). For example, if A is stopped, B will also be stopped,

etc.

Since two presentations that are synchronized must have the same runtime duration (in our model),

when unequal length presentations are synchronized we think that the user should be able to

specify, through an extension, how to equalize the durations of these presentations. The user can

either shorten the longer presentation, or stretch the shorter presentation. To shorten the longer

presentation, the user may (for example) truncate it at its end so that both presentations are of equal

length; or, the user can compress one presentation by increasing the rate associated with the

playout. To stretch a presentation, it can either be expanded by decreasing its rate; or, perhaps

some pre-defined alternate action can be specified similar to that used in the restricted-blocking of

Steinmetz [2].

5 . 0 Conclusions/Summary

In this paper we have presented a new event-based temporal specification model using three simple

relations expressing causality, deferment and fine-grain synchronization. Using the powerful

primitives of our language, causes, defers, and synchs we have been able to express the

temporal relations of all models we have been able to study. In addition, there are many relations

our model can express that cannot be expressed by any of these models -- for example, causality

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 36

with negative delays, and deferment with positive or negative delays. Our approach to distinguish

between the specification of temporal relations and their behavior at implementation has resulted in

a very flexible and extensible language.

Although our model is quite expressive, we have refrained from adding additional capabilities for

two reasons: 1) this would have the affect of increasing the complexity of the language -- we

strongly feel that simplicity is very important from the users’ perspective; 2) it is not our intention

to define a temporal model that facilitates specification of every conceivable temporal relationship.

We do believe that embedding our predicates within a language such as C++ will provide

additional capabilities that are currently not supported.

In addition, although we haven’t discussed support for alternate presentations that may be based

upon resource and hardware availability for example, we do believe that the use of system-defined

extensions should support this. For example, one extension may indicate that a specification is

conditional, based upon some specific resource availability (we view this as a behavioral

implementation rather than a conceptual specification).

We have not yet examined the affects of playing temporal specifications in reverse, which have

been discussed in [3, 16]. Nor have we addressed spatial specification (when and where windows

should be displayed for example), which have been discussed in [3], and implemented in [6].

Future Directions

It is expected that an implementation of this model will be incorporated into a project similar to

Gibbs’ programming environment project which uses a data flow model [25] (current data flow

models do not support the specification of temporal relations.) Secondly, we would like to build

or extend a temporal formatter to support our model.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 37

We also anticipate future modifications to the model during implementation, and probably after

some use. However, the three basic relations do allow the specification of more temporal relations

than the models we have examined. Although, this is a good indication of the comparative

expressibility of our model, it doesn’t provide any insight into the ease of use within a real

multimedia presentation development environment.

References

1. Blair, G., et al., An Integrated Platform and Computational Model for Open Distributed Multimedia
Applications. 1992. : p. 223-236.

2. Steinmetz, R., Synchronization Properties in Multimedia Systems. IEEE Journal on Selected Areas
in Communications, 1990. 8(3): p. 401-412.

3. Schnepf, J., D. Du, and J. Liu, Synchronization for an Interactive Multimedia Presentation System.
1993, University of Minnesota.

4. Gibbs, S., et al. A programming environment for multimedia applications. in 2nd Int’l Workshop on
Network and Operating system support for Digital Audio and Video. 1991. Heidelberg, Germany.

5. Blakowski, G., J. Huebel, and U. Langrehr. Tools for specifying and executing synchronized
Multimedia presentations. in 2nd Int’l Workshop on Network and Operating system support for
Digital Audio and Video. 1991. Heidelberg, Germany.

6. Blakowski, G., Tool Support for the Synchronization and Presentation of Distributed Multimedia.
Computer Communications, 1992. 15(10): p. 611-618.

7. Pazandak, P. and J. Srivastava, A Multimedia Temporal Specification Model Framework and
Survey. 1994, University of Minnesota. Technical Report in progress.

8. Vazirgiannis, M. and C. Mourlas, An Object Oriented Model for Interactive Multimedia
Presentations. The Computer Journal, 1993. 36(1): p. 78-86.

9. Mano, Object Model Facilities for Multimedia Data Types. 1990, GTE.

10. Gupta, A., T.E. Weymouth, and R. Jain. An Extended Object-Oriented Data Model For Large Image
Bases. in SSD 1991. 1991. Zurich.

11. Ishikawa, H. and e. al., The Model, Language, and Implementation of an Object-Oriented
Multimedia Knowledge Base Management System. ACM TODS, 1993. 18(March): p. 1-50.

12. Gibbs, S., C. Breiteneder, and D. Tsichritzis, ed. Data Modeling of Time-Based Media. Visual
Objects, ed. D. Tsichritzis. 1993, Centre Universitaire D’Informatique: Université De Genève.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 38

13. Drapeau, G.D. and H. Greenfield. MAEstro - A Distributed Multimedia Authoring Environment. in
USENIX. 1991. Nashville, TN.

14. Gibbs, S., C. Breiteneder, and D. Tsichritzis, Audio/Video Databases: An Object Oriented
Approach. IEEE Proc Data Engineering, 1993.

15. Hamakawa, R., H. Sakagami, and J. Rekimoto. Audio and Video Extensions to Graphical Interface
Toolkits. in Network and Operating Systems Support for Digital Audio and Video. Third Int’l
Workshop Proceedings. 1992. Germany.

16. Little, T.D.C. and A. Ghafoor, Interval-based Conceptual Models for Time Dependent Multimedia
Data. IEEE Trans. on Knowledge and Data Engineering, 1993. 5(4): p. 551-563.

17. Wijesekera, D., D. Kenchamanna-Hosekote, and J. Srivastava, Specification, Verification and
Translation of Multimedia Compositions. 1993, TR94-1, University of Minnesota.

18. Allen, J.F., Maintaining Knowledge about temporal intervals. Communications of the ACM, 1983.
26(11).

19. Buchanan, M.C. and P.T. Zellweger. Automatic Temporal Layout Mechanisms. in ACM Multimedia
93. 1993. California: ACM.

20. Fujikawa, K., et al. Multimedia Presentation System “Harmony” with Temporal and Active Media.
in USENIX. 1991. Nashville, TN.

21. Horn, F. and J.B. Stefani, On Programming and Supporting Multimedia Object Synchronization.
The Computer Journal, 1993. 36(1): p. 4-18.

22. Esch, J.W. and T.E. Nagle. Representing Temporal Intervals Using Conceptual Graphs. in Proc.
5th Annual Workshop on Conceptual Structures. 1990.

23. Buchanan, C.M. and P.T. Zellweger. Scheduling Multimedia Documents Using Temporal
Constraints. in Network and Operating Systems Support for Digital Audio and Video. Third Int’l
Workshop Proceedings. 1992. Germany.

24. Gibbs, S. Composite Multimedia and active objects. in OOPSLA. 1991.

25. Gibbs, S. Application Construction and Component Design in an Object-oriented Multimedia
Framework. in Network and Operating Systems Support for Digital Audio and Video. Third Int’l
Workshop Proceedings. 1992. Germany.

Pazandak, Srivastava A Multimedia Temporal Specification Model and Language Page 39

Derivable Start

Temporal Relations

Basic Relations

Delayed Starts/Fin.

Interval Specif. End Point Specification

Timeline
Hier-
archic

Causality

•
•

•

CE

N
ag

el
, E

sc
h

•

Sync
Point

B
la

ko
w

sk
i,

H
üb

el

••

•
•

S
te

in
m

et
z

W
ije

se
ke

ra
, e

t.
al

.

•

•

•

•

Li
ttl

e,
 G

ha
fo

or

H
am

ak
aw

a,
 S

ak
ag

am
i

G
ib

bs
, B

re
ite

ne
de

r

D
ra

pe
au

, G
re

en
fie

ld

P
az

an
da

k,
 S

riv
as

ta
va

•••

CI

Temporal Objects

•••••
- World Time
- Relative Time

•

Media Durations
- Predictable
- Unpredictable

•
•

• •
•

•
•

••••• •

Intervals
Endpoints

- Begin/End
- Finer Grain
- Application

•
•
•

•

•
•

••••• •

•

A
lle

n

•

•
•

Temporal

Framework

for Comparisions of

Media Synchronization

Models

- Time •

Deferment
- Delays

- Flexibility

- Flexibility

- Variability

- Unspecified

- Absolute

•

•

•
•

••

•
•

•

•

•

•

- Positive
- Negative
- Range

•
•
•

- Positive
- Negative
- Range

•
•

- Flexibility •

Fine-Grain

- Extensional

Event
Language Events

B
la

ir,
C

ou
ls

on
•

•

•

•
•
•
•
•

•

•

•

•

H
or

n,
 S

te
fa

ni

•

•

•

V
az

irg
ia

nn
is

,M
ou

rla
s

B
uc

ha
na

n,
 Z

el
lw

eg
er

F
uj

ik
aw

a,
 e

t.
al

.

• •

•
•

•
•

•
•

•
•

•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•••
•

•

•

— — — — — —

— — —

— — —

Media

Events

Timepoints

Table 1. Framework & Comparisons

•
•

•
•

•

S
ch

ne
pf

, D
u,

 L
iu

•

•
•

•

•

Object Synchronization

Synchronization

Models can't directly express Mix of deferment and causality Unclear if actually supported Restricted

- Supported • • •• •

• •
•1

•1

• •
•2

•2

•2

•2•3

•3 •3 •3 •3

•3 •3 •3

—

•

