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Abstract

Advances in storage, compression, and network
technology are making support for Video-On-Demand
applications feasible. Continuous and real time data
needs of this application require resource management
and scheduling of storage devices. This paper discusses
a model for scheduling storage devices to guarantee
rate requirements for continuous media. We present
an analysis of this class of schedulers and derive a
feasibility condition and its buffer requirements. The
condition is used for admission control of new requests,
operalions on ezisling requests, and to configure block
sizes and main memory requirements. The analysis
presented here yields solutions in the continuous do-
main. However, due to the discrete nature of the disk
scheduler a solution from this analysis cannot be im-
plemented. We discuss transformations of the derived
solution into one in the discrete domain while ensur-
ing guaranteed data rate.

1 Introduction

Multi-media computing is a rapidly emerging ap-
plication area due to recent advances in computer
hardware and software technologies such as mass stor-
age, image and video compression, and high speed
networks. Amongst the various types of data that
comprise multi-media, data that requires continuous
real time flow is a requirement for a growing class of
such applications. This class of data is called con-
tinuous media (CM). Video and audio data are ex-
amples of this class. Video-on-Demand (VOD) is one
such application that requires CM data access and has
recently received much attention from the entertain-
ment, telecommunication and computer industry.

Typically, subscribers to a VOD service request CM
data (video or audio) at a specified rate. The CM data
is retrieved from a VOD server and transported across
a high bandwidth network to the subscriber’s display
device. Conventional file servers like NFS cannot han-
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dle requests for CM data since they have been designed
for small file accesses which do not require data in real
time. Such file servers do not use access semantics of
continuous media. A file server that uses such access
semantics and provides continuous, real time access to
its clients is needed.

In this paper we present the design of a file server
that provides continuous media access to its sub-
scribers as a VOD server. The VOD server stores and
manages movement of CM data to/from a set of stor-
age devices that we denote as a VOD storage system.
To handle a large set of CM data a VOD storage sys-
tem will typically comprise magnetic and optical stor-
age devices like hard disks and discs (both erasable
and non-erasable). To satisfy concurrent access re-
quests from a set of subscribers the VOD server sched-
ules data movement to/from the VOD storage system
using a finite (fixed) main memory. In scheduling data
access to the storage system the VOD server needs to
ensure that at all times the subscribers’ request for
data is satisfied. Thus, a guarantee is given to each
subscriber such that once the subscriber’s request is
accepted, the VOD server should be able to satisfy its
CM data requests thereafter. After retrieval the VOD
server transports the CM data to its subscribers via a
LAN or a WAN network.

With today’s hardware technology, designing
schemes to schedule concurrent access requests to a
storage system at the VOD server is expected to be
a critical task. A consensus amongst researchers in
this area ([RV93], [LS92], [AOG92], [CL93]) indicates
that this task is vital to providing VOD service to
subscribers. This focus is a result of what is being la-
belled as the I/0-bottleneck problem where the storage
devices are fast becoming the bottleneck in a com-
puter system. Hence, system resource management
and scheduling are critical aspects of a VOD server
design. There are two aspects to this problem,

e Managing the storage surfaces, or the data place-
ment problem

o Scheduling the storage system, or the VOD




scheduling problem.

Although the design of a VOD server needs to ad-
dress both these issues, solutions to the data place-
ment problem are generally limited due to the one
time nature of the placement process. This is a
limitation because (i) the cost of re-organization due
to fragmentation and updates is generally high, and
(ii) changes in access sequence, e.g. rewind and fast-
forward, are unpredictable and such information is
usually unavailable at storage time. Thus, any lim-
itations of the placement solution must be overcome
by the scheduling mechanism. Hence, scheduling the
VOD server becomes critical to maintain servicing of
access requests.

In this paper we describe an analytic approach to
the design of a VOD scheduler, a component that
schedules data accesses to a VOD storage system. The
scheduler that we describe is deterministic since it pro-
vides service guarantee to each subscriber. We present
the analysis of this scheduler in Section 2 and derive
a solution to this problem in the continuous domain,
and compute the buffer requirements for such a solu-
tion. A set of design considerations that are useful
in its implementation are discussed. A solution thus
obtained cannot be directly implemented due to the
discrete nature of the disk scheduler. The problem of
transforming this solution to one in the discrete (inte-
gral) domain is described is Section 3 as VOD schedul-
ing with integral quanta. We use jitter as a metric to
evaluate such a transformation and derive an invari-
ant that must be preserved in such transformations to
guarantee data rate. This invariant is used to eval-
uate an intuitive transformation, namely uniform bi-
nary toggling algorithm (UBTA) and show its limited
applicability. We propose a new transformation called
the uniform safe toggling algorithm (USTA) that is
applicable in a larger domain, and discuss its impli-
cations. Section 4 compares our work with previous
approaches to this problem. We discuss our conclu-
sions in Section 5.

2 Scheduling in a VOD Server

Multiple subscribers can concurrently request ac-
cess to a VOD server. If a single CM stream is being
accessed by multiple subscribers, a VOD server can
fetch the stream exactly once from the storage device
and broadcast it to all the subscribers using multicas-
ting techniques. From an I/O scheduling viewpoint

20

Symbol | Description
b block size
R data transfer rate of the disk
Ti data consumption rate for stream i
& inter-block access gap for stream 1
vi Maximum per-block-access time
a Maximum overhead per stream
TE . Service time for round k
ns blocks fetched and consumed for stream i
I blocks fetched for stream ¢ in round &
Bf Accumulated blocks for stream ¢
¥ Quantizing map for stream ¢
ef Error due to QF
[ SF Slack time during round k

Table 1: A list of symbols used in this paper.

this is equivalent to fetching exactly one CM stream?.

However, a more likely case is when each subscriber
accesses a different CM stream, each independent of
the other. In both cases a servicing strategy for con-
current streams is necessary.

In this section we describe a scheme to service a set
of accesses for CM streams from a VOD server. The
fundamental aim of the mechanism is to provide de-
terministic service, i.e. a guarantee to each subscriber
that she will receive CM data at the rate that was pre-
specified. In the discussions that follow we describe a
VOD server that services s concurrent subscribers. In
requesting a CM stream the subscriber needs to spec-
ify the CM stream that she wishes to access and the
rate at which the stream is required to be retrieved.
We assume that r; is the data rate requested by sub-
scriber 7.

2.1 Scheduling model for a VOD Server

To provide deterministic servicing for each request,
a cyclical scheduling policy is used. In this servicing
policy retrieval of data from the VOD storage system
proceeds in rounds. Data blocks fetched in round k are
consumed by subscribers during round k+1. Data for
each CM stream is managed in a circular buffer as
shown in Figure 1. In each round the VOD storage
system fetches nf blocks of data for stream 7 and fills
the buffer starting at the location pointed to by the
producer pointer, while the subscriber consumes data

1Even in this case when a common CM stream is being
viewed by many subscribers each could be viewing different seg-
ments of it.




from the location pointed to by the consumer pointer.
In servicing subscriber ¢ in round k, the storage sys-
tem fetches all> n¥ blocks before it begins servicing
subscriber i + 1. Hence, to guarantee data rate we
need to ensure that the consumer is never starved, or
as in Figure 1 the producer pointer is always ahead
of the consumer pointer.

Daia that wes produced in
round k

comre N

Deta being produced in
round k+1

E
|

Figure 1: A circular buffer for stream i.

CM streams are stored in the VOD storage sys-
tem as a sequence of data blocks each separated by an
inter-block access gap. In accessing each data block
in the VOD storage system we denote the per-block
access time for a CM stream requested by subscriber
i, called v;, as the sum of the inter-block access time,
¢;, and the block read time, %. Thus,

vi=€6+ 7 (1)
In switching to service the next subscriber, namely
i+ 1, the head assembly of the VOD storage server
must be re-positioned at the beginning of the first of
n¥,, blocks. Since each of the s streams are assumed
to be independent, this switch time is bounded by the
sum of the maximum seek and rotation latency time
of the VOD storage server denoted by a. Thus,

mazx mar

a= tseek + rotation

Given such a model of the VOD storage system the
problem of providing deterministic servicing of a set
of s requests for CM streams requires computing the
number of blocks n¥ that must be fetched in round k,
to be consumed at rate r; by subscriber 7 during round
k 4+ 1. We denote the set of nf’s as a VOD schedule

and the component that performs this computation as
the VOD scheduler.

2This assumption is realistic since placement strategies for
CM streams ([CL93], [KHS93a]) aim at reducing inter-block
access times within a CM stream.
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Figure 2: VOD scheduler as a feedback control system.

A VOD scheduler can be modelled as a feedback
control system. Figure 2 sketches the block diagram
of a VOD scheduler. In this figure a vector of the
subscribers’ rates, r, is input to the VOD scheduler.
This is used to compute the round k service vector
n*, i.e. the number of blocks to be fetched for each
subscriber. The transfer function in the block diagram
is the service time, Tyy., which has been partitioned
into two components, namely the inter-request switch
time and access times for fetching blocks. Thus, for
round & we have,

L] 3
TE . = Z(a +vnf) =sa + Z vinf (2)
im1 i=1

Notice that the second term in the transfer func-
tion, i.e. the service time, is proportional to the num-
ber of blocks accessed in round k. The feedback arc
in Figure 2 models this relationship.

In summary, a VOD scheduler (i) provides deter-
ministic servicing of all concurrent accesses (i.e. no
stream is starved), (ii) proceeds in rounds such that
data produced in round k is consumed in round k+1,
and (iii) has finite buffer available to it.

Lemma 1 states a property of such VOD schedulers
at steady state, i.e. when there is no change in the rate
vector r.

Lemma 1 In a VOD scheduler at steady state

3
b> E’U,’T,‘
i=1

Proof: (By contradiction)

Let )°;_; viri > b. From the scheduling model dis-
cussed in this section, the number of blocks needed
by stream i in round k, n¥, must at least be the data
consumed by stream 7 in round k + 1. Thus,

bnF > r;TE]

suc




Since the consumption rate remains constant, nf =
n¥+! = n} for each of the s streams.
Multiplying each side with v;,
buinf > Tk (virs)

sve

Summing the s equations and expanding TX! from
Equation 2,

bi: vn] > (sa+ i:v;n;) i:v;r;
i=1 i=1

i=1

Or,

s s s
(b - Zv.—ri) Z v,—n: 2 s« Z’Ugr;
i=1 i=1 i=1

Since b — 3;_, vir; < 0, the left hand side of this
expression has to be non-positive. However the right
hand side has to be non-negative. Hence we have a
contradiction®

|

Theorem 1 computes the service vector for round
k when a VOD scheduler is in steady state.

Theorem 1 The minimum number of data blocks
that must be fetched by a VOD scheduler at steady
state for stream i in any round is,

s
nf= e m1<i<s
b_z_f:lvjrj

Proof: The minimum number of blocks needed is
when data fetched for stream 7 in round &, nf-‘, equals
the data consumed by stream 7 in round & + 1. Thus,

k k+1
bnl’ = riTsut

Since the consumption rate remains constant, nf =
nft1 = n? for each of the s streams.

Vectorizing this equation and substituting from
Equation 2 at steady state,

bn* = sar + rvT

n* (3)
the

From Lemma 1 we
determinant?as,

can compute

det(b] —rvT) = b~} (b— D viri) > 0

i=1

3Note that when b = Es vir; then o = 0.

i=1
elaborates on this unrealistic condition.

*det(A) is the determinant of a s X s matrix 4.

[KHS93b)]
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Hence,

(I —rvT)n* = sar = n* = sa(bl —rvT)'r
Using a formula due to Sherman and Morrison

([GvL83)) this simplifies to,

1 ipevTlr
* _ 2 b b
n* = sa (bI+ 1—vT%Ir)r

Expanding and collecting the terms for n} we get

sa
n=|————)r,0<i<s
) <b—E?=1varf) vUes
[ |

Theorem 1 shows a non-linear relationship between
the consumption rate of a stream and the number of
blocks that need to be fetched in a VOD schedule. No-
tice that this is consistent with the block diagram in
Figure 2 of a VOD scheduler which is a block diagram
of a non-linear system. However, an important obser-
vation is that at steady state, the number of blocks in
the service vector for stream ¢ is proportional to their
consumption rates. This is shown in Corollary 1.

Corollary 1 In a VOD schedule at steady state, %* =
1
H1<ij<s

Proof: Follows from the result in Theorem 1.

2.2 Design Considerations for a VOD
scheduler

Lemma 1 gives a condition for the existence of a
schedule for a VOD scheduler. We denote this condi-
tion as the feasibility condition of a VOD scheduler.
This condition has three important ramifications to re-
source management and scheduling in a VOD server.

1. Effect of siream rate, r;: The condition limits
the cumulative retrieval bandwidth of concurrent
streams. Increase in consumption rate of any of
the current streams can lead to an infeasible VOD
scheduler. A similar effect is observed upon ad-
mitting a new stream. Thus, rate changes of cur-
rent streams or admitting new streams have sim-
ilar effect on the feasibility of a VOD scheduler.

2. Effect of per-block access time, v;: Inter-block ac-
cess time is affected by two factors,

¢ Placement of streams on storage surface(s).
Scattering data on the storage surface(s) in-
creases the per-block access time and can
lower the feasibility of a VOD scheduler.




o Accessing a stream in a sequence that is
different from the one when it was stored.
Such accesses may® occur in operations
like Reverse-Play and Fast-Forward on CM
streams that are placed for Normal-Play re-
trieval. Notice that these two operations ac-
cess data in reverse and alternate sequences,
respectively, as compared to the Normal-
Play sequence which is the sequence used for
optimizing placement.

3. Effect of block size, b: An increase in the block
size increases the feasibility of a VOD scheduler.
This can be explained as follows. Note that in
Equation 1 an increase in the block size increases
the block read time. This decreases the fraction
of the overhead, ¢;, in v;. Hence, data throughput
per access request increases with the block size.
This is an evidence for

o Improved performance on disk arrays, where
a larger logical block can be striped across a
disk array concurrently. This effect has been
observed by previous work [GR93], [L.S92].

o Improved throughput when larger block
sizes are used while storing larger data types
like full-motion video [LS92].

As an example, consider a VOD server with a
high performance disk, whose disk transfer rate is 1
GBps. If each of the subscribers were retrieving high-
definition television (HDTV) quality video streams
with frame sizes (that equal the disk’s block size) of
0.5 MB at a rate of 30 frames per second, and an inter-
block access gap of about 1ms then we can compute
N, the number of subscribers such a storage system
can support, as follows. From Lemma 1

b> N(vr)

Substituting the parameters, we find N < 22.22.
Thus, at most 22 subscribers can be supported in such
a configuration. If this configuration was modified to
permit concurrent access to n disks at one time (and
thereby increasing the logical block size to nb) then N
would growly linearly® with n or N(n) = 22n

In summary, Lemma 1 provides a useful design
equation that can be applied to improve the feasibility
of a VOD server. The feasibility condition also gives
the VOD scheduler an admission control test for new
streams and operations on current streams.

5When out of order retrieval is disallowed.
8 Assuming this set can be partitioned into disjoint subsets
each of size 22.
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2.3 Buffer Requirements of a VOD

Scheduler

The VOD scheduling policy described in the previ-
ous section requires buffering the data fetched in round
k for consumption in round k¥ + 1. We can compute
the buffer requirements of a VOD scheduler as a con-
sequence of Theorem 1. In this section we compute
the buffer requirements of such a VOD scheduler.

A VOD scheduler needs buffer to hold data for each
stream during round k and its successor, namely round
k4 1 (Figure 1). When the VOD scheduler is in
steady state, data buffered in each pair of consecutive
rounds are equal. If By op is the buffer size (in blocks)
required by the VOD scheduler, then

s
Byvop = 2271:

i=1
From Theorem 1, we substitute the value of n]’s
to get,

: S«
Bron 2233 (7= 0r)
=1 V't

i=1
This simplifies to ,
2sc z::l T3
b— iz vimi

Figure 3 sketches the graph of Bvop vs. 3 ;- vifs
(for a fixed v).

Bvop >

Bvop
Feasible Region

Bmaa:

T virs Z

Figure 3: Plot of 3_;_, vir; vs. Bvop.

In a VOD server the total number of buffer blocks
available to the scheduler is finite. If this quantity




is denoted by B™® then we can plot this value in
Figure 3 to fix an upper bound on the feasible space
for a VOD scheduler. This limits the maximum value
of S7i_, viri to b’ (< b) where V' is

2sa) i Ti
/o =1"1
b=b- Bm:w

3 VOD Scheduling with
Quanta

Integral

A consequence of Theorem 1 is that in any round
of a VOD scheduler the service vector n* can take
non-integral values, i.e. one or more n}’s can have
fractional values. Such schedules are invalid in the
sense that

o In storage devices where one data block corre-
sponds to one MPEG/JPEG frame, a fractional
block leaves the frame decoder stalling for data
until the next VOD schedule is completed. This
stalling results in stream discontinuity (observed
as flickers).

¢ In all storage systems, fetches proceed in integral
multiples of blocks on the disk.

Thus, although a VOD scheduler can exist, in prac-
tice its execution can be impossible and cause unde-
sirable effects like stalling decoders. Techniques like
rounding and truncating to convert fractional values
in n* to integers may not necessarily satisfy Equation
3. In some cases they will result in stream disconti-
nuity while in others they will result in buffer over-
run, i.e. the problem of accumulating more data than
available buffer space. Thus a VOD schedule must be
practically executable’. We denote such a scheduler
as a valid schedule and define it to be

Definition 1 (Valid VOD schedule)
A VOD schedule is valid if the service vector is an
integral multiple of block size b.

We denote the problem of computing a valid VOD
schedule as the problem of VOD scheduling with in-
tegral quanta. In this section we discuss a technique
to analyze this problem, investigate an intuitive so-
lution and show its limited applicability. Finally, we
present an algorithm to generate a possible valid VOD
schedule from a VOD schedule of Section 2.

7Note that in this section the integral quanta restriction is
only for data fetches and not for data consumption.

3.1 Jitter: A Consequence of Integral
Quantization

To analyze this problem we need to quantize the
event of stalling in the decoder since this phenomenon
affects the rate guarantee of the CM stream. In round
k of a VOD scheduler data blocks buffered for stream 1,
BY, are consumed at rate r;. We define the exhaustion
time E¥ for a stream i in round k as follows,

¢ _ bBf
B =—* (4)

Intuitively, the exhaustion time is the time it will
take for the consumer to consume Bf blocks of data
at rate r;. The consumption rate r; may be continu-
ous or bursty depending on the nature of the decoder.
Discontinuity in stream i occurs whenever the time
to execute the current round exceeds its exhaustion
time. We quantify this difference in the time to ex-
ecute the VOD schedule for round k, T, and its
exhaustion time, EF, for stream i to be its jitler in
round k, 5¥. Hence, j¥ = Tk, — EF. Intuitively jitter
is the time during which the decoder stalls for data
and is perceived as a flicker in the stream. A posi-
tive jitter (j¥ > 0) results in stalling the decoder in
round & while a negative jitter implies accumulation of
data that is available for consumption during the next
round k + 1 (since not all data in the buffer was con-
sumed during round k). Notice that when devices such
as encoders, decoders, and disks produce (or consume)
data continuously the direct execution of the schedule
due to Theorem 1 will realize zero jitter.

Since accesses to storage devices are in integral mul-
tiples of their block size b we need a technique to con-
vert the n* service vector for Theorem 1 to an integral
service vector. For this we introduce the notion of a
quantizing map, @, i.e. a mapping from the set of real
number to the set of integers.

Definition 2 (Quantizing Map) A
map, Q, is a map defined as,

quantizing

Q:RYU0O—ZTUD

ceil() and floor() functions® are examples of a
quantizing map.

Associated with a quantizing map for stream 7 in
round k, Q¥, is the error due to quantization, ef.

8When restricted to a non-negative domain.




Definition 3 (Quantization Error) Quantizalion
error (e) due 1o a quantizing map Q is,

e=Q(z)—=

Thus, a general solution to this problem is derived
by starting with the service vector n* from Theorem
1 and applying a quantizing map, Q¥ to each n} to
construct a valid scheduler for a round k. The space
of such a class of solutions can be categorized by (i)
quantizing maps for each stream within a single round,
ie. {Q%,...,Q%}, and (ii) quantizing maps between
rounds, i.e, {QF, Q:-""l, ...}

Using Definition 3 we can vectorize the quantiza-
tion of a vector as follows,

Qk(nk) - nk _ ek
If we decide to fetch QF(nf) blocks in round , in-
stead of nf blocks, then the resulting VOD schedule
will cause jitter in stream 7 in round k + 1, which can

be expressed using the definition for jitter and Equa-
tion 4 as

_ QA (nk)

Ti

k+1 _ k41!
Ji T e

Note that T’“‘lmc is the duration of the modified
VOD schedule where Q¥+!(nf*!) blocks are fetched
for stream ¢,

Re-arranging and vectorizing,

. ’
rI_]"*’1 = rT"'H, .

ve — Q¥ (n¥) (5)
Or,

rljFtt = r(sa + VTQ"‘H(nk'H)) - ka(nk) (6)
Using Equations 3 and 6 we can re-write Equation

5 as
rIj*+! = bek — rvTeFt! U]

Note that »; jk+1 is the accumulation of data in
stream 1 durmg round k + 1. When ]k'“ < 0, this
quantity is data unconsumed in round k + 1. Other-
wise, it is the data deficit for round & + 1.

Thus, in round k + 1 the jitter in stream i due to
quantizing maps Q¥ and QF*! is

. be;*
=TTk ®)

T
From this discussion we find that to guarantee data
rate at all time during the playout of a stream we

must ensure that (i) j¥ < OVk, and (i) xIj**+'Vk is
bounded. The former condition ensures that jitter is
always non-positive while the latter ensures that the
data accumulation due to negative jitter is bounded.
These two conditions together comprise the invariant
that must be maintained in transforming the schedule
given by Theorem 1 into a valid VOD schedule

3.2 Uniform Binary Toggling Algorithm
(UBTA) for Jitter Elimination

An intuitive approach to the problem of VOD
scheduling with integral quanta is a toggling approach.
In this approach the quantization map is toggled be-
tween ceil() and floor() in successive rounds. It seems
intuitive that such an approach would result in a valid
scheduler. We now use the conditions developed in
the previous section to investigate the validity of im-
plementing such a scheme.

The UBTA uses a uniform quantization map, i.e.
the same quantizing map is applied to all streams
within a round. However, it toggles between ceil()
and floor() in alternate rounds, or for 1 < ¢ < s,
Q! = ceil() if QF = floor(), and QF*! = floor()
if QF = ceil(). For ease of reference, we shall denote
the rounds when Q¥*! = ceil() as over-compensating
rounds and rounds when Qf = floor() as under-
compensating rounds.

If during an over-compensating round k£ the quanti-
zation map is chosen to be ceil(), the quantization er-
ror ef in stream i is given by,ef = nf —[n}],1<i < s
which will be non-positive. We can compute the jit-
ter for a stream 7 during an over-compensating round
along this stream using Equation 8. Similarly, if
round k is an under-compensating round, the quan-
tizing map is chosen to be floor(). The quantiza-
tion error ef in stream i for this round is given by
ef = nf — |n?|,1,<i < s which will be non-negative.
Jitter in an under-compensating round can be com-
puted likewise.

Having derived the jitter in an over-compensating
and an under-compensating round we can now verify
the validity of the schedule, i.e. if the invariant holds
for this solution. Given that UBTA alternates between
under-compensating and over-compensating rounds,
the average jitter for a stream i is j*9 = ﬂ:‘i
Without loss of generality, assume round 2k (even)
to be the over-compensating round and round 2k + 1
(odd) to be the under-compensating round. Then,

vTezk+2)

2k 2k+1
joos = L bei® _ roamyr | bett
: 2 T i



If we let [n;] = n} + nF’ and [ni] = nf —nf,0<
v ! .
nF,nf" < 1. Then e?* = —nf" e?**! = nf'. Since

[ R 1
e?* = e2¥*2 we can re-write® this equation as,

RGBT )
7

i=1

1
javg _
Ji 2(1 v

9)
From this we have the following result.
Lemma 2 UBTA generates a valid VOD schedule if
Vi,n] - |n]] <0.5

Proof: Since nf = n} — |n{], the claim asserts

that when Vi,nf < 0.5, UBTA will generate a valid
VOD schedule which will have jitter non-positivity.
Vectorizing Equation 9,

rlj®’d = %(b(2np —e)—rvi(2nF —e))

where e = (1---1)7. Since a valid schedule should
have non-positive jitter only,

rlj*d = %(bl —rvT)(2nF —e) <0

From Lemma 1, (b —rv7) is non-singular. Hence,

p—

nFS—e

~N

Thus we have Vi : nf’ < 0.5.

In [KHS93b] we have investigated the boundedness
of data accumulation due to the binary toggling al-
gorithm. If BY is the data accumulated for stream i
at the end of round k, then we show that Bf grows
linearly with k¥ when Lemma 2 holds. This is unde-
sirable since in a finite number of rounds, any buffer
space allocated can be overrun.

In summary, Lemma 2 restricts the applicability of
UBTA in deriving valid VOD schedules. It is unreal-
istic to assume that the condition given in the lemma
will hold in a general VOD server where access rates
and operations can widely vary. Whenever the con-
dition in Lemma 2 is violated, the VOD server will
display positive jitter in some (or all) streams leading
to stalling at the decoder. When independent streams
need to be externally synchronized (at the subscriber’s

9Observe that nf ! + n.F = 1, a restatement of a relation of
ceil() and floor() of a fixed real number.
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site) it is possible that one of the streams has a posi-
tive jitter while the other has negative jitter. The net
effect of concurrent access of two such streams is that
the skew between the two streams increases monoton-
ically. Since this skew at the server is not desirable
UBTA has limited applicability.

3.3 Uniform Safe Toggling Algorithm
(USTA) for Jitter Elimination

Since our aim is to provide deterministic servicing
of streams, any valid VOD scheduler should maintain
non-positive jitter as well as bound data accumula-
tion. In this section we construct an algorithm called
the uniform safe toggling algorithm(USTA) that main-
tains both conditions.

Using Equation 8 as a starting point in our con-
struction we require that the jitter along each stream
¢ be non-positive, i.e.

k41 be;* T _k+1 .

T =——-vie"T,1<i<s
i

Vectorizing this equation,

rliF = (b - rvT)e* <0

Since we started with a feasible VOD scheduler,
hence (I — rv7) is invertible. Thus e < 0. This im-
plies that the quantizing map QF we must use should
be of the form1?

Qf(n)=[nf1+pi,1<i<s

where p; € {0,1,2,...}. Notice that the choice of p;
determines the rate of data accumulation in the buffer.
Since we wish to minimize the buffer required to ser-
vice a valid scheduler we pick p; = 0 for all streams.

Hence Q¥(n}) = [n}],1<i<s.

With such a quantizing map we can rewrite Equa-
tion 3 as,

b[n*] > sar 4+ rv7 [n*+1) (10)

k+1

Since at steady state, n* = n =n"*, we let

TvoD-round = s + vl [—n‘]

To simplify the complexity due to the non-linearity
of the model we fix the duration of a round to be
TvoD-round- Data consumption during each of the
these rounds will be Tvop—rounar. The inequality in

101n general other forms of Q% can be considered. However
the aim here is to pick a slow growing integral function of n}
since that will require lesser buffer.




Expression 10 implies that the data fetched in round
k is not completely consumed within that round. Let
this difference between the LHS and RHS of Equation
10 for round & be B¥, the buffer accumulation, where
BF is the data (in blocks) accumulated for stream i.
Thus we have,

B* = k(I — rvT)([n*] —n*)

Clearly, B* grows linearly w.r.t k. To limit its
growth the VOD scheduler permits consumption of
data accumulated instead of fetching them from the
storage system.

Until now, nf“ denoted the number of blocks that
were needed to be fetched from the VOS storage sys-
tem in round k + 1 for stream.i. However, since we
have been accumulating data in the buffer (BF) for
stream i not all the nf*! blocks need to be fetched.
Thus, at this point we make a distinction between the
number of blocks needed to be fetched for stream i,
during round k + 1, nf*! and the number of blocks
that are actually fetched in round & + 1, ff+1.

Hence,

¥ = [nf - BY

The effective service vector £¥*! for round k + 1 is,

(11)

From its construction USTA has non-positive jit-
ter. However, it remains to be shown that this scheme
bounds the growth of data accumulation for each of
the s streams. The following lemma proves this result.

fk+1 = I'n* _ Bk'l

Lemma 3 Data accumulation for each stream using
USTA is bounded.

The proof of this result is described in [KHS93b].
In it we show that the data accumulated along each

stream is bounded to 1 — —'ﬁ# blocks.

Figure 4 shows the behaviour of the VOD sched-
uler implementing USTA while servicing 2 and 4 video
streams'!. Interestingly BY for s = 2 is greater than
B¥ for s = 4, Vk for any stream 1.

Thus, we have constructed USTA as a valid solu-
tion to the problem of VOD scheduling with integral
quanta. The algorithm computes the number of blocks
that are required to be fetched in round k£ 4+ 1 from
Theorem 1, [n*], and fetches f¥*! blocks from the
storage system.

' The plot shown here is that of a VOD scheduler working
with a single disk. b = 2Kbytes, r; = r = 1.4Mbps, v; = v =
2ms, R = 10MBps, and o = 35ms.

27

0.8

. r 2

Figure 4: Data accumulation due to USTA.

Notice that in implementing USTA the storage sys-
tem will remain idle during some period of the VOD
round. This is because Ty 0p -round Was computed to
be the time to fetch [n*] blocks. Instead, in round
k + 1, £5+1 blocks were fetched. The difference in
these times is not used by the VOD scheduler. We
can quantify this period of time. called the slack time
as S¥t! = (sa 4+ vT [n*]) — (s + vT£h+1)

Using Equation 11 and Lemma 3 the maximum
slack time due to USTA can be derived to be,

8

PIL

i=1

max S* =
ke{1,2,--}

(12)

Since the slack time is not utilized by the VOD
scheduler, this time can be used to service non-CM
tasks. A consequence of Equation 12 is that slack
time (and thereby the throughput of non-CM tasks)
reduces as the operating point of the VOD scheduler
gets closer to (b, B™%%) of Figure 3. This should be
expected since the VOD server has finite capacity and
thus the sum of utilization of CM and non-CM tasks
remains constant. An increase in capacity of CM tasks
leads to reduced capacity for non-CM tasks and vice
versa.

Constructing USTA also demonstrates a trade-off
in deriving a valid VOD schedule, and hence that of
providing a higher quality of service (non-positive jit-
ter) for additional buffer space. From Lemma 3 the
buffer overhead in implementing USTA is at most s
blocks!2. Given a VOD scheduler with a maximum
buffer availability of B™%* s of them need to be pre-
allocated for data accumulation due to USTA. The
VOD scheduler has effectively B™%* — s buffer blocks
available to it.

12 Assuming main memory allocation in block units.




4 Related Work

The problem of designing a VOD scheduler has
been addressed by most researchers of file system de-
sign for CM data [RV93], [LS92], [CL93], [AOG92].
[RV93] attempts to solve a similar problem in the
context of a HDTV storage server. [CL93] describes
a technique for probablistic servicing of subscribers.
Probablistic analysis of the I/O scheduling for CM
data implies that there is a finite, non-zero probabil-
ity of starving streams. The notion that subscribers
are only promised a quality of service is acceptable in
some application domains. It is not clear how that
model can provide guarantees. [AOG92] describes a
model for scheduling I/O for CM data. Although they
schedule data access in integral quanta their schedul-
ing model does not seem to be easily extendible to
handle rate variations. [LS92] observes that larger
physical and logical block size in an array of disks by
data striping can prove effective in scheduling access
for CM data. Their scheduling model does not seem
to be extendible to handle rate variations.

5 Concluding Remarks

The analytical model described in this paper has
proved useful in deriving significant properties of a
scheduler for CM data. Lemma 1 gives a feasibility
condition for a set of concurrent streams and can be
used as admission control for new streams as well as
operations on existing streams. The condition have
also given design guidelines that can be useful in con-
figuring a VOD server. The model and its analysis has
provided a framework for rigorous analysis of many
of the problems faced in implementing schedulers for
CM data. It provides a technique to derive a discrete
solution to the scheduling problem from the solution
from the model. The integral quanta problem is an
example where such a framework has been useful in
investigating UBTA and deriving USTA.
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